å
ߤޤ59ǤϤʤǤ礦
411ڡ 0:18:11 40446
ߤ뤯
ABDȢACEƱꢤADE=36-8=28
AEFžAGˤäĤȢADEȹƱʻѷǤ뤫
֤äƤAEFҤ
36+28-5=59
ְäƤ뤳Ȥ˵դե꡼Ƥޤ
ĴҰ
411ڡ 0:25:18 40448
Mr.ǥ
#40446Ʊ
׻ľƤ⡡59ˤʤޤ
ɵ͡#40450 λפޤ

ΥפϡƱʻѷǤƤ뤳ȤؤɤʤΤǡ
õȤϤ뤳ȤˤƤޤ
411ڡ 1:05:02 40449
ޥ
ߥޥե뤪ӷǼIDְäƤޤ..m(__)m

36 + (36-8) - 5 = 59

Ǥ...m(__)m
iMac 411ڡ 0:26:25 40450

ѷγʬaȤbȤ̾դơͿ줿ȻѷιƱѤϢΩ򤯤59Ƴ
411ڡ 0:48:01 40451
abcba@baLLjugglermoka
դдñǤ͡ʲͤ˲򤭤ޤ
ͳѷADCD=36ʤΤǭADF=AED=36-8-5=23ä
36+23=59
411ڡ 1:04:20 40452
Ԥ
ѷǤ뤳Ȥ1֤餤äƤޤä////
äѤޤʬǽ񤤤Ƥߤ󤳤Ȥˤϲ͢
411ڡ 1:11:57 MAIL:yeah_pika-pika-chu@ezweb.ne.jp 40453
CRYING DOLPHIN
ؤιƱĶ褯Ǥ裱˽ꤵƤޯǤ

ABDȢACEդȤδ֤γѤ줾ΤǹƱä
ABCᢤABDܢADCᢤACEܢADCᢤADEܢCDE36cm^2
äƢADE36828cm^2
ADFȢAEGդȤδ֤γѤ줾ΤǹƱä
ADEᢤADFܢAFEᢤAEGܢAFE28cm^2
äƢAEG28523cm^2
ѤϻͳѷADCEܢAEGʤΤǡ362359cm^2
ï⤤ʤԳϡ 411ڡ 8:40:29 MAIL:ʤ硣 HomePage:֥仿40454
uchinyan
Ϥˤϡơϡ
⻻餷ڤǤȤƤϰפʤʴǡ
ʤäƤŻƤѤ꺣ޤǰʾ˾˻ʤޤ
ޤǤΤ褦ˤϽ񤭹ʤȻפޤ줫⵹ꤤפޤ

Ȥ櫓ǡ

ѷȤȤꡤABD ACEADF AEGʤΤǡ
޳ѷADCEG = ADCE + AEG = ADCE + ADF
= ADCE + (ADE - AFE) = ADCE + (ADCE - CDE) - AFE = ADCE * 2 - CDE - AFE
= (ADC + ACE) * 2 - CDE - AFE = (ADC + ABD) * 2 - CDE - AFE = ABC * 2 - CDE - AFE
= 36 * 2 - 8 - 5 = 59 cm^2
ˤʤޤ
ͥνȡ 411ڡ 11:40:10 MAIL:uchi@sco.bekkoame.ne.jp 40455
uchinyan
ǼĤɤߤޤ
㴳Υȥ֥뤬ä褦Ǥ (^^;
ˡϡƱʻѷ򸫤ĤƲ򤯡ȤȤǡƱȻפޤ
ͥνȡ 411ڡ 11:46:12 40456

uchinyan󤬤ޤȤƤ˲ʬβˡ⼨Ĥ¾βˡߤ(̤βäƤ⤷Ǥ)ȥ󥸤ƤΤǤ⣱٤ˤʤäƤޤäƤޤABCȢADEΤߤƤäȢABDȢACEιƱĤꡢƱͤʢADEȢAFGδط颤ADFȢAEGιƱ狼ꡢˤɤ夭ޤABEC,ADGEʿԤѷDzȤʤΤǤϤȹͤƻߤޤäƤΤǤäȲȤʤޤ
411ڡ 20:38:27 40457
ϥ饮㡼ƥ
ʤʤ׻礤ޤǤMATHEMATICAˤʣʷ׻Ǥ
412ʶ 20:38:56 HomePage:湩ؤ˥40458

ѷդĹȳѤ礭ܤǤ͡ڤǤ
413ڡ 3:14:56 40459
ä
㡼åۡॺBlu-ray򸫤ʤ׻ޤ
415ʷ 0:49:15 40460
Ȥ
ɸǡ

B(0,0),C(4*3^(3/4),0),A(2*3^(3/4),2*3^(5/4)),BD=a,D(4*3^(3/4)-a,0),AD=sqrt(a^2-4*a*3^(3/4)+16*3^(3/2))
A,D濴ȾABαߤθEmathematica 8.0 home edition ǵ
Solve[(x - 2 3^(3/4))^2 + (y - 2 3^(5/4))^2 == a^2 - 4 a 3^(3/4) + 16 3^(3/2) && (x - a)^2 + y^2 == a^2 - 4 a 3^(3/4) + 16 3^(3/2), {x, y}]
{x -> 1/2 (8 3^(3/4) + a), y -> (Sqrt[3] a)/2}}
CDE=8BD(=a),EͤDE:DF=28:23FAF
A,F濴AFȾ¤ǸG,AFG̤AFľ򤹤
θGޤǤĹ⤵,AFդȤƢAEGѤ
޳ѷADCED=AEG+ADE+CDEȤMaxima 5.25.1ǵ

solve((4*3^(3/4)-a)*sqrt(3)*a=32,a)$
a:rhs(part(%,1))$
e1:(x-2*3^(3/4))^2+(y-2*3^(5/4))^2=a^2-4*a*3^(3/4)+16*3^(3/2)$
e2:(x-a)^2+y^2=a^2-4*a*3^(3/4)+16*3^(3/2)$
solve([e1,e2],[x,y])$
part(%,2)$
a+23*(rhs(part(%,1))-a)/28$
23*rhs(part(%th(2),2))/28$
sqrt(factor((%th(2)-2*3^(3/4))^2+(%-2*3^(5/4))^2))$
e3:(x-2*3^(3/4))^2+(y-2*3^(5/4))^2=%^2$
e4:(x-%th(4))^2+(y-%th(3))^2=%th(2)^2$
part(solve([e3,e4],[x,y]),2)$
rhs(part(%,1))$
rhs(part(%th(2),2))$
e5:2*3^(5/4)=k*2*3^(3/4)+l$
e6:rhs(part(%th(10),2))=k*rhs(part(%th(10),1))+l$
solve([e5,e6],[k,l])$
part(%,1)$
e7:y=rhs(part(%,1))*x+rhs(part(%,2))$
e8:y=-(x-%th(7))/rhs(part(%th(2),1))+%th(6)$
part(solve([e7,e8],[x,y]),1)$
rhs(part(%,1))$
rhs(part(%th(2),2))$
sqrt(factor((%th(2)-%th(11))^2+(%-%th(10))^2))$
sqrt(factor((2*3^(3/4)-rhs(part(%th(19),1)))^2+(2*3^(5/4)-rhs(part(%th(19),2)))^2))$
8+sqrt(rhs(e2))^2*sqrt(3)/4+%*%th(2)/2;59()
˭ԡ 417ʿ 14:33:06 MAIL:fttnm528@ybb.ne.jp 40461