٥륯åĥ
ϤäȤФޤ
֤0ξ1̤
1ξ3̤
2ξ15̤
3ξ3-02-16+2632̤
4ξ4-03-12-23+26+3160̤
5ξ5-04-13-21+13+5266̤
042ܤ5ʬ­288̤ꡣ
5ĤΤ3Ĥ2ĤƱʤ¿פޤ2-2ȤѤǤۤ͡ɴְ㤨Ƥְ㤤˵ŤƺΤǡܤǤäǤ
113ڡ 0:36:17 45469

ԤǤϤ֤θĿǾʬΤǤ路ƿߥ˵դޤͤƤߤޤ
113ڡ 1:20:37 45470
ToruFukatsu
פ֤˽񤭹Ǥߤޤ
Τ2^10=1024 оΤΤ2^5=32 岼оΤΤ2^6=64 оΤΤ2^5=32 оΤΤΤϻäܤоΤˤʤäơ2^3=8 ĤоΤΤΤϤơ(32-8)+(64-8)+(32-8)=104 оΤʤΤ1024-104-8=912 äơ912/4+104/2+8=288̤
113ڡ 1:53:30 45471

Ф
Ť˹ͤ򤱤ޤ
֤ꤷƹͤ10ɤʬΤ2^10̤
Τ
оΤɤ꤫2^5̤
Ͼ岼֤(žƤƱ)ޤΤǼ¼Ⱦʬ
岼оΤɤ꤫2^6̤
Ϻ֤(žƤƱ)ޤΤǼ¼Ⱦʬ
žоΤɤ꤫2^5̤
Ͼ岼(Ʊ)֤ޤμ¼Ⱦʬ
оΤľ岼оΤΤΤɬžоΤʤɤ
ľ岼IJžоΤΤ߹ͤɤ꤫2^3̤

2^10̤Τ岼žоΤǤʤΤ
٥ޤꡢ2^10-2^5-2^6-2^5+2^3+2^3=912̤
1Ĥη岼֤֤žȤǤʣƤΤ
¼1/4912/4=228̤

ʾ¼Τߥ٥ޤȤäƷ׻
228+(2^5-8)/2+(2^6-8)/2+(2^5-8)/2+8=288̤
٥
ttp://www.fastpic.jp/images.php?file=8851313460.jpg

#45471ޤʷ˽񤤤ƤäƤޤ(^_^;)
ҥߥޤm(__)m
113ڡ 15:16:28 45472
ֿء׾ι
ŻǤޤΤ䤳ס
ɤ򡢾岼оΤоΤʬƿޤ
113ڡ 5:30:35 45473
ˤ
櫓Ʒ׻
282ˤʤäƴְ㤨ޤ
ͤʤޤOrz
113ڡ 9:38:29 MAIL:nikotan@fat.coara.or.jp 45474
ǯ
#45469٥륯åĥΤ褦˾ʬޤǤɤäΤǤ
0-01-02-03-04-05-0Ⱥ¦о̵褦õơ
1-12-13-12-24-13-2α¦ϲǤ⤤ʤȹͤ
ɤƤ⤳ʾʤޤǤ
ˤžȿžǽʣΤ뤳Ȥ˵դƤʤȤ
ɤä
113ڡ 10:44:02 45475
Sueh
٤ְ㤨ƤޤޤϷ׻ߥǤ
ݤʾʬdzǧ褦Ȼפä餽ǡġġ

ͤ#45471ͤƱͤǤ
2^10ĤɤΤ1ɤxȤˡ2󤺤ĸɤyȤˡ4󤺤ĸɤzȤˤʬޤ
x:=2^3, 2y:=(2^5-2^3)+(2^6-2^3)+(2^5-2^3)=104, x+2y+4z=2^10
Τ x+y+z=(2^10+3*8+104)/4
113ڡ 11:52:58 45476
ˤ
岼ۤʤäƤ⡢ΤΣ̤꤬󤷤ʤΤ
ȤƤޤOrg
113ڡ 13:52:23 MAIL:nikotan@fat.coara.or.jp 45477
uchinyan
Ϥˤϡơϡ
ࡤ䤳Ψ㤤ȤƤǤ礦
ȤͤˤʤäΤιͤפ
ʴǡ

οޤоˤϡоΡ岼оΡ180βžоΡޤ
ΣĤΩǤϤʤɤ줫Ĥ³ƹԤФ⤦Ĥ¸Ǥޤ
줬䤳٤ְ㤨ޤա
ޤо˺СΤϡ2^10 = 1024 ̤ꡤ
оΤʤΤϡͤФΤǡ2^5 = 32 ̤ꡤ
岼оΤʤΤϡξüޤǾȾʬͤФΤǡ2^6 = 64 ̤ꡤ
žоΤʤΤϡͤФΤǡ2^5 = 32 ̤ꡤ
ˤϣİʾоĤΤޤޤޤ
˽Ҥ٤褦ˡĤоĤΤϣĤоޤ
ϡ㤨СоΤľ岼оΤȹͤƤ褯ξ壳ĤǷޤΤǡ2^3 = 8 ̤ꡣ
ǡ
оĤΤϡ32 - 8 = 24 ̤ꡤ
岼оĤΤϡ64 - 8 = 56 ̤ꡤ
žоĤΤϡ32 - 8 = 24 ̤ꡤ
о⤿ʤΤϡ1024 - 24 - 56 - 24 - 8 = 912 ̤ꡣ
Ǥϡ岼ΤҤä֤ȲžƱΤΤǽʣޤ
˽Ҥ٤褦ˡоϼ¼ĤͤнʬʤΤǡ
ĤоĤΤϡ8/1 = 8 ̤ꡤ
оĤΤϡ24/2 = 12 ̤ꡤ
岼оĤΤϡ56/2 = 28 ̤ꡤ
žоĤΤϡ24/2 = 12 ̤ꡤ
о⤿ʤΤϡ912/4 = 228 ̤ꡣ
­ФΤǡ
8 + 12 + 28 + 12 + 228 = 288 ̤ꡤ
ˤʤޤ
113ڡ 13:58:04 45478
uchinyan
ǼĤɤߤޤ


ʲεҤϡ⤽ϻ伫ȤٶΥ˲᤮ʤΤǤ
޳ѤʤΤǤͤޤǤˤȻפäƸΤǤ
Ȥ⤢äơˡʬϻ F.A.Q. ΡֻϰϡפεҤ򻲹ͤˡ
ĿͤǤиǼŪ˹ԤäƤΤǤäơҴŪʤΤǤϤޤ
ޤǤ⤴ͤǤ餺

Ϥ곧路Ƥ褦Ǥ͡

#45469#45470#45475#45488#45491#45499
֡СθĿ֤ʤɤǾʬŪ˥ѥ夲ˡ
ܺ٤Ϥ褦ǤʬϾάޤ

#45471#45472#45476#45478#45507
ФΥѥоˤۤʤ뤽줾νʣƤ­夲ˡ
#45472Ρ
228+(2^4-8)/2+(2^5-8)/2+(2^4-8)/2+8=288̤
κդϡ228 + 4 + 12 + 4 + 8 = 256 288ǤǤ
⤽⡤
亸оΤɤ꤫2^5̤
䤳Ͼ岼֤(žƤƱ)ޤΤ
¼Ⱦʬ2^4̤
Ⱦʬˤդ꤬褦˻פޤ
θ塤ޤ͡Ƥޤ

#45473#45503
ɤ岼оΤоΤʬƿˡȤΤȡ
ܺ٤
󤬥١ˤʤäƤ롩
θ#45503Ǿܺ٤ޤ
ƱȤΤ΢֤Ʊˤʤ뤫ɤȤȤΤ褦Ǥ
Ūˤϡޤȱϻѷ岼оΤɤǾʬ
ƾǺоΤȲžоΤθƿƤȤȤΤ褦Ǥ

#45474#45477
櫓Ʒ׻
Ȥˡܺ٤
282ˤʤäƴְ㤨ޤ
¤ϻǽ餳ʤޤְ㤤θϡ
оΤȾ岼оΤͤвžоΤϼ¸ǤΤǹͤʤƤ褤
ȻפäȤǡ
(2^10 - 2^5 - 2^6 + 2^3)/4 + (2^5 - 2^3)/2 + (2^6 - 2^3)/2 + 2^3
= 234 + 12 + 28 + 8 = 282
餫ˡžоΤǤäƺоΤǤ岼оΤǤʤΤΤǡϴְ㤤
ξ 2^5 - 2^3 = 24 4 dzä 6 ­ 288 ˤʤޤ
Ф̣ΤȹͤΤǤǤ礦͡

#45484
ФΥѥоˤۤʤʣ٤򤽤ư쵤˽ˡ
ʤۤɡμ꤬ޤ͡˽ʣȤФͤƤäꤷޤ
äʬŤ餤ΤʤΤäƤޤ礦

οޤˤϡ⤽⡤оΡ岼оΡ180βžоΤΣĤоޤ
ΤɤΣĤоΰưԤäƤ⣳ܤоΰưޤ
ǡ죳Ĥоΰưȿž岼ȿž180βžˤäưܤ礦ФΥѥϣĤǤϤʤǤ⣴ĤǤ
ʣ٤ȤȤˤȡΤȤˤʤäƤꡤǤ٤ƤǤ
aоʤѥνʣ٤ 4
bоΤĥѥνʣ٤ 2
c岼оΤĥѥνʣ٤ 2
džоΤĥѥνʣ٤ 2
eġ᤹٤Ƥоĥѥνʣ٤ 1
νʣ٤ɽ򵭹Ȥơ(a,b,c,d,e)ɽȤˤޤ
줾ΰ֤˽ʣ٤񤫤ޤ⤽⳺ʤϽʣ٤ϤʤΤ 0 Ȥޤ
ޤǽƤơ
٤ƤΥѥ2^10 = 1024 ̤ꡤa, b, c, d, e ޤޤ졤ʣ٤ (4,2,2,2,1)
оΤΥѥ2^5 = 32 ̤ꡤb, e ޤޤ졤ʣ٤ (0,2,0,0,1)
岼оΤΥѥ2^6 = 64 ̤ꡤc, e ޤޤ졤ʣ٤ (0,0,2,0,1)
žоΤΥѥ2^5 = 32 ̤ꡤb, e ޤޤ졤ʣ٤ (0,0,0,2,1)
ǡ飴Ĥ­ȡʣ٤ (4,4,4,4,4) Ȥʤäơa, b, c, d, e Τ٤Ƥ 4 ˤʤޤ
ꡤʣˤ 4 dzФ褯
(1024 + 32 + 64 + 32)/4 = 1152/4 = 288 ̤ꡤ
ˤʤޤ

ʤʤޤǤ͡
ޤ٤Ƥо 2^3 = 8 ̤꤬ɽ˸ʤΤ򤤤Ǥ

ץˤˡʤäΤäȰճ
ĹǤ褱ưפȤΤǤ

ȤäƤ顥

#45483#45490#45492#45493#45495#45501
ץˤˡ
1110ڡ 10:59:55 45479

#45479
uchinyan
Ĥ⤢꤬Ȥޤ
äʬǤ⵭ҥߥ˵Ĥޤ
ơ8ƤȾʬˤޤ餷ޤ
m(__)m
113ڡ 15:19:14 45480
uchinyan
#45462
a cm Τ١˹ͤС
6 * 6 * 6 * 1/3 * 6 = 432 cm^3
Ǥ褵
113ڡ 15:32:03 45481
baLLjugglermoka
֤˥٥Ȥꡢ򤭤ޤοϿ޷ĥäĶǤ
113ڡ 18:30:59 45482
kyorofumi
Burnside's counting theorem, written with Matlab

function sansu()

toys = de2bi([0:1023]);

sigma = zeros(1,8);

for i = 1:1024
toy = toys(i,:);

if isequal(toy,toy)
sigma(1) = sigma(1)+1;
end
if isequal(toy,fliplr(toy))
sigma(2) = sigma(2)+1;
end
if isequal(toy,flipbt(toy))
sigma(3) = sigma(3)+1;
end
if isequal(toy,rotate(toy))
sigma(4) = sigma(4)+1;
end
if isequal(toy,fliplr(flipbt((toy))))
sigma(5) = sigma(5)+1;
end
if isequal(toy,fliplr(rotate((toy))))
sigma(6) = sigma(6)+1;
end
if isequal(toy,rotate(flipbt((toy))))
sigma(7) = sigma(7)+1;
end
if isequal(toy,fliplr(rotate(flipbt((toy)))))
sigma(8) = sigma(8)+1;
end
end

sigma
sum(sigma)/8


end

function toy = fliplr(toy)
%flip the toy left to right
toy = toy([6,5,4,3,2,1,10,9,8,7]);
end

function toy = flipbt(toy)
%flip the toy bottom to top
toy = toy([1,10,9,8,7,6,5,4,3,2]);
end

function toy = rotate(toy)
toy = toy([6:10,1:5]);
end

Stdout:

sigma =

1024 32 64 32 32 64 32 1024

ans =

288

113ڡ 18:39:44 45483
lake
Ѵλ
ưʤȿž岼ȿž岼ȿž(=180ž)4

ưʤ̤ѲʤΤ1024̤
ȿž̤ѲʤΤ32̤
岼ȿž̤ѲʤΤ64̤
岼ȿž̤ѲʤΤ32̤

(1024+32+64+32)/4 = 288
288̤꤬Ȥʤޤ
113ڡ 21:25:25 45484
⡼ޥ
ᤸ㡼 ^^;
ʿоΡ2^2*2^4
ľоΡ2^5
оΡ2^5
줾ʣϤߤƱ 2^3
(2^10-((2^6-2^3)+2*(2^5-2^3)+2^3))/8=114
114+(2^6-2^3)+2*(2^5-2^3)+2^3=226

ˡΤꤿơõޤޤ^^;;

ٶˤʤޤ

#45484 lakeΥޡȤʲˡ!!
butĤ錄ˤĤǤͳɤǤޤOrz
114ʶ 0:14:45 45485
uchinyan
#45485⡼ޥ󤵤
ʤ#45484#45479ɲäޤͤޤǡ
114ʶ 15:17:56 45486
⡼ޥ
#45486 uchinyan ^^
ʤۤɤ
狼䤹⤢꤬Ȥޤm(_ _)m
򤤲ˡǤͤ
Ѵλ4ʬ줬4ȤΤ⵮¤λǤޤ ^^
114ʶ 19:35:27 45487
̴
䡼񤷤ä֤⤫äƤޤǽϤ̵˴
פޤǽϡ֤θĿʬƤȯۤɤäΤǤ
оݤƱȤʤΤƤ꤯ɤƽ񤭽Ф
ޤͤβٶĺޤڤޤ
114ʶ 21:32:55 45488
鯤ο
AJ IH

B XY G

CD EF

H(ʿȿž)V(ľȿž)R(180ٲž)ǰܤꤢĺδطܤ
10ĺ򥰥롼ʬƹͤ롣

A2=H(A1),A3=R(A1),A4=V(A1)
B2=H(B1),B3=R(B1),B4=V(B1)
C2=H(C1),C3=R(C1),C4=V(C1)

A1B1 B2A2

C4=C1 XY C2=C3

A4B4 B3A3

ơEi=(Ai,Bi)ȤȡEi2*24̤ɤʬѥ¸ߤ롣
(r,r)(r,g)(g,r)(g,g)

ǡʲ3caseˤĤƤ줾ѥȤ߹碌夲롣

case1
ξ硢H,V,RγѴǰܤꤢΤƱȤƿ롣

E1E2

rX Yr

E4E3

{Ei}ѥޤC(4,1)*14
{Ei}ѥޤC(4,2)*530
{Ei}ѥޤC(4,3)*3*336
{Ei}ѥޤC(4,4)*66
-----------------------------------------
76̤ꡣ

case2

E1E2

gX Yg

E4E3

ξ硢H,V,RγѴǰܤꤢΤƱȤƿ롣

Ʊͤˤơ76̤

case3
ξ硢VѴǰܤꤢΤƱȤƿ롣

E1E2

rX Yg

E4E3

{Ei}ѥޤC(4,1)*14
{Ei}ѥޤC(4,2)*848
{Ei}ѥޤC(4,3)*3*672
{Ei}ѥޤC(4,4)*1212
-----------------------------------------
136̤ꡣ

פơ76+76+136288̤//

ʤʲξʤΤϡHѴСcase3Τɤ줫ˤʤ뤫顣

E1E2

gX Yr

E4E3

115ڡ 0:54:34 45489
鯤ο
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Sansu995
{
/*
AJ IH

B XY G

CD EF
*/
public class Figure995
{
public int a;
public int b;
public int c;
public int d;
public int e;
public int f;
public int g;
public int h;
public int i;
public int j;

public Figure995(int a, int b, int c, int d, int e, int f, int g, int h, int i, int j)
{
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.e = e;
this.f = f;
this.g = g;
this.h = h;
this.i = i;
this.j = j;
}

public Figure995(): this(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
{
}

public Figure995 H(Figure995 x)
{
return new Figure995(x.h,x.g,x.f,x.e,x.d,x.c,x.b,x.a,x.j,x.i);
}

public Figure995 V(Figure995 x)
{
return new Figure995(x.c, x.b, x.a, x.j, x.i, x.h, x.g, x.f, x.e, x.d);
}

public Figure995 R(Figure995 x)
{
return new Figure995(x.f, x.g, x.h, x.i, x.j, x.a, x.b, x.c, x.d, x.e);
}

public string str(Figure995 x)
{
return string.Format("({0} {1} {2} {3} {4} {5} {6} {7} {8} {9})",
x.a, x.b, x.c, x.d, x.e, x.f, x.g, x.h, x.i, x.j);
}

public override String ToString()
{
return str(this);
}
}

class Figure995EqualityComparer : IEqualityComparer<Figure995>
{
public bool Equals(Figure995 b1, Figure995 b2)
{
if (b2 == null && b1 == null)
return true;
else if (b1 == null | b2 == null)
return false;
else if (
b1.a == b2.a &&
b1.b == b2.b &&
b1.c == b2.c &&
b1.d == b2.d &&
b1.e == b2.e &&
b1.f == b2.f &&
b1.g == b2.g &&
b1.h == b2.h &&
b1.i == b2.i &&
b1.j == b2.j
)
return true;
else
return false;
}

public int GetHashCode(Figure995 bx)
{
int hCode =
bx.a << 9 +
bx.b << 8 +
bx.c << 7 +
bx.d << 6 +
bx.e << 5 +
bx.f << 4 +
bx.g << 3 +
bx.h << 2 +
bx.i << 1 +
bx.j;
return hCode;
}
}

class Program
{
static void Main(string[] args)
{
Figure995EqualityComparer figure995EqC = new Figure995EqualityComparer();

// HashSet饹ˤFigure995ơ֥
HashSet<Figure995> hsTable = new HashSet<Figure995>(figure995EqC);

for (int a = 0; a < 2; a++)
for (int b = 0; b < 2; b++)
for (int c = 0; c < 2; c++)
for (int d = 0; d < 2; d++)
for (int e = 0; e < 2; e++)
for (int f = 0; f < 2; f++)
for (int g = 0; g < 2; g++)
for (int h = 0; h < 2; h++)
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
{
Figure995 pattern0 = new Figure995(a, b, c, d, e, f, g, h, i, j);

if (hsTable.Contains(pattern0))
{
continue;
}

Figure995 pattern1 = pattern0.H(pattern0);

if (hsTable.Contains(pattern1))
{
continue;
}

pattern1 = pattern0.V(pattern0);

if (hsTable.Contains(pattern1))
{
continue;
}

pattern1 = pattern0.R(pattern0);

if (hsTable.Contains(pattern1))
{
continue;
}

// Figure995ɲá̤Ͽʤɽ
if (hsTable.Add(pattern0))
{
Console.WriteLine("{0:D4}:{1}", hsTable.Count, pattern0.ToString());
}
}

Console.WriteLine("Total pattern number: {0:D4}", hsTable.Count);
}

}
}
115ڡ 0:55:45 45490
鯤ο
#45489äΤǺơ

AJIH

BXYG

CDEF

H(ʿȿž)V(ľȿž)R(180ٲž)ǰܤꤢĺδطܤ
10ĺ򥰥롼ʬƹͤ롣

A2=H(A1),A3=R(A1),A4=V(A1)
B2=H(B1),B3=R(B1),B4=V(B1)
C2=H(C1),C3=R(C1),C4=V(C1)

A1B1B2A2

C4=C1XY C2=C3

A4B4 B3A3

ơEi=(Ai,Bi)ȤȡEi2*24̤ɤʬѥ¸ߤ롣
(r,r)(r,g)(g,r)(g,g)

ǡʲ3caseˤĤƤ줾ѥȤ߹碌夲롣

case1
ξ硢H,V,RγѴǰܤꤢΤƱȤƿ롣

E1E2

rXYr

E4E3

{Ei}ѥޤC(4,1)*14
{Ei}ѥޤC(4,2)*530
{Ei}ѥޤC(4,3)*3*336
{Ei}ѥޤC(4,4)*66
-----------------------------------------
76̤ꡣ

case2

E1E2

gXYg

E4E3

ξ硢H,V,RγѴǰܤꤢΤƱȤƿ롣

Ʊͤˤơ76̤

case3
ξ硢VѴǰܤꤢΤƱȤƿ롣

E1E2

rXYg

E4E3

{Ei}ѥޤC(4,1)*14
{Ei}ѥޤC(4,2)*848
{Ei}ѥޤC(4,3)*3*672
{Ei}ѥޤC(4,4)*1212
-----------------------------------------
136̤ꡣ

פơ76+76+136288̤//

ʤʲξʤΤϡHѴСcase3Τɤ줫ˤʤ뤫顣

E1E2

gXYr

E4E3

115ڡ 1:00:38 45491
vbscript
' 2--1 6--7
' / ` / `
'3 -- 8
' ` / ` /
' 4--5 10--9 R:1,G:2
dim a(10),b(1000)
a(0)=0
call saiki(1,a,b,d)
msgbox a(0)
sub saiki(n,a(),b(),d)
a(n)=1
while a(n)<=2
if n<10 then
call saiki(n+1,a,b,d)
else
b(0)=""
for j=1 to 10
b(0)=b(0)&c(a(j))
next
deta=0
j=1
while deta=0 and j<=a(0)
jj=1
while deta=0 and jj<=3
select case jj
case 1'岼
bb=c(a(5))&c(a(4))&c(a(3))&c(a(2))&c(a(1))&c(a(10))&c(a(9))&c(a(8))&c(a(7))&c(a(6))
case 2'
bb=c(a(6))&c(a(7))&c(a(8))&c(a(9))&c(a(10))&c(a(1))&c(a(2))&c(a(3))&c(a(4))&c(a(5))
case else'ž
bb=c(a(10))&c(a(9))&c(a(8))&c(a(7))&c(a(6))&c(a(5))&c(a(4))&c(a(3))&c(a(2))&c(a(1))
end select
if b(j)=bb then
deta=1
else
jj=jj+1
end if
wend
j=j+1
wend
if deta=0 then
a(0)=a(0)+1
b(a(0))=b(0)
'input #1,b(a(0))
end if
end if
a(n)=a(n)+1
wend
end sub
function c(n)
if n=1 then
c="R"
else
c="G"
end if
end function
115ڡ 9:33:42 45492
ǯ
ʬƵ᤿ΤǤ-2-260Ĥ񤭽Фƾ岼žƱˤʤΤʤޤ
#45484ϤʤǤʤΡȽޤǤ#45486⤢ʤ򤷤ޤ
٥ޤ 2^10ˡ岼ȿžȿžž3ĤηΤǡ
٥ޤ餳äڤơ2^10˲äƤˤ4dz褦ˤʤݤȤȤǤ礦

115ڡ 15:08:57 45494
uchinyan
ء쵤˥ץबޤ͡
¤Ͻ񤭹ߤʤäȻפäưȤץबΤǤ񤭹Ǥʡ
ʥ١åǤ

FOR n = 0 TO 1023
LET LR = 0
FOR i = 1 TO 10
LET LR = LR * 2 + MOD(INT(n/2^(i-1)),2)
NEXT i
LET UD = 0
FOR i = 1 TO 5
LET UD = UD * 2 + (MOD(INT(n/2^(i+4)),2) * 2^5 + MOD(INT(n/2^(i-1)),2))
NEXT i
LET R = MOD(n,2^5) * 2^5 + INT(n/2^5)
IF (n <= LR) AND (n <= UD) AND (n <= R) THEN
LET cnt = cnt + 1
END IF
NEXT n
PRINT cnt

END
116 17:05:31 45495
鯤ο
䤦ء쵤˥ץबޤ͡

⸫Ȥꡢ׻㤤ǤϤȡȤꤢץǧƤ顢դͤ뤫Ȥˤʤޤ

115ڡ 20:46:09 45496
ǯ
ץबޤɤɤǤ褯ޤɤȸäƤ⽽ʥ١å⤯餤Ǥ
ʣ򡢤ɤå򤿤ƤƥץवΤǤ礦ץ༫ȤꡢιͤΤꤿǤ͡
116 7:58:03 45497

45497ǯԤ

ʥ١åν鿴ԤǤ
ξδŪʼ򤴾Ҳ𤤤ޤ

10ο01ο֤ο10ογư̤οб1024̤οޤ

1ܤοܤɬפʰ̤οؤ뤳ȤǡоΡ岼оΡоΤʥѥб3ĤοĤä2ܰʹߤοӤޤоݰưǽ褿ƱʤСӤ2ܰʹߤο˥åޤ

Ʊͤ2ܤοܤƺоΡ岼оΡоΤʥѥб3ĤοĤ3ܰʹߤοӤǡƱʤޤ

ʲåäϥѥʤƱͤ1023ܤοޤǷ֤ޤ

Ǹ˥åäƤʤθĿޤ
116 12:28:38 45498
ˤ⡼
ˤϡ
˶路ޤ
ŻȳС̲Ȼʳ򡢤򤯤Τ䤷ޤ
оѤĤġĤΥѥʬषΤǤ
桹鷺Ĥä褦䤯
ʤ⤷ʤ
#45484βˡϤᡢ餷
ٶƤȻפޤ

ʬϡüüǴڤƱۤʤ뿧ˤǾʬ
ΣĤǴڤοʬͤ줾
֣ĤˤĤơ岼оΤˤʤ뤫оΤˤʤ뤫פǾʬޤ

˾岼оΡоΡ̤͡
ͱǴڤοΥѥ
֡ССʡ֡ˡˣ̤Ƿޤ롣ͣߣڣ

˾岼оΡоΡߡ̤͡
ͱǴڤοΥѥ
֤ξͣĤǴڤˤĤơ̤棲Ľʣ̤ͣ
СƱͤˣ̤ꡡС֡ͣߣˣĽʣ̤ͣ
͡ܣܣڣ
˾岼оΡߡоΡ̤͡
ͱǴڤοΥѥ
֡ССʡ֡ˡˣ̤줾죲Ľʣ
ͣߣࣲڣ

ݣ˾岼оΡߡоΡߡʲžƱΡˡ̤͡
ͱǴڤοΥѥ
֡ССʡ֡ˡˣ̤줾죲Ľʣ
ͣߣࣲڣ

ݣ˾岼оΡߡоΡߡʲžʪˡ̤ͣ
ͱǴڤοΥѥ
֡СС֡ˣ̤줾ξˤ
岼ȿžȿžž򤷤顢ף̤Ȥ߹碌Ǥ롣
ͤäơǴڤΥѥ󤴤ȤˡΣĤǴڤϣĽʣ
ͣࣴߣڣ

ˡݣˡιס̤ꡡȡʤޤʾ
޻Ա¶ʼΡˡ 116 14:14:21 45499
uchinyan
#45497ǯԤ
#45495ΥץΥ르ꥺ#45498ȴŪˤƱǤ
㴳ιפ򤷤Ƥޤ

ޤ0 1 Υѥ 0 1023 Σʿɽȹͤ
⣲ʿɽ򤹤뤳Ȥʤбоΰư10ʿɽΤޤ޹ԤäƤޤ
LRUDR ʬǤ

ˡΣĤǤ⸵ο n 꾮ʤä餹Ǥ˥åѤߤʤΤФ
ǤʤΤ򥫥Ȥޤ줬оΰưƱˤʤ뤫ΥåǤ
ϥѥθĿФΤǤޤ

פǡץबåꤷ®ʤޤ
116 17:25:45 45500
(Keigei)
BASICȤǤߤΤɤޤ

FUNCTION P(x,y)
LET z=bitand(x,y)
LET p=y
IF z>0 AND z<x THEN LET P=bitxor(x,y)
END FUNCTION
LET count=1024
FOR a=0 TO 1023
IF P(10,P(17,P(320,P(544,a))))<a OR P(48,P(72,P(132,P(258,P(513,a)))))<a OR P(33,P(66,P(132,P(264,P(528,a)))))<a THEN LET count=count-1
NEXT a
PRINT count
END
116 21:38:56 45501
ǯ
󤵤uchinyan®ֻ꤬Ȥޤ
줫ɤٶƤޤ
116 23:20:01 45502
ֿء׾ι
#45473 ­򤷤ޤ
⤦Ǥ˳ͤβ˽ФƤơʣƤ뤫⤷ޤ󤬡ޤˤǤäȿʤΰ̣ǽ񤫤Ʋ͡
οƱȤȤϡĤޤʲ̤Ǥ
оΤ¤Ӥ΢֤ƤƱʤΤǰ̤ȿơоΤʤ¤Ӥ΢֤̤¤ӤȽŤʤΤ2̤̤ȿ롢Ȥ򤹤ȤȤǤ
ǡ¦A¦BȤƹͤޤ
AB줾줬岼оΤǤȤоΤǤȤʬơ
()A岼оΤB岼о
()A岼оΤBо(AоΤBϾ岼оΤϲžˤƱ)
()AоΤBо
()ΤȤABƱ8̤
AB㤦Ȥžˤ2̤꤬ǤΤǡ(888)/2=28̤
()ΤȤžǤϽŤʤϤʤΤǡ岼оΤ2̤꤬ʣƤ824/2=96̤
()ΤȤϾդɬפǤ͡
ABƱ΢֤2̤꤬ʣΤǡ24/2=12̤
ABƱǤʤȤ2̤꤬ʣ4̤꤬ʣ礬ޤ
ABоΤʤȤ΢֤ˤ2̤꤬ʣǡʳϲž΢֤ˤ4̤꤬ʣƽФޤäơ(24242424)/4+24/2=144̤
ʾ壳ĤξפơФޤ
ǽϡʤˤоΤ¤ӤͤȤƤǺߤޤ衣

117ʷ 7:45:32 45503
̤ꤹ1
ϽˤäޤǤϤ̵ǰ餷Ǥ
ơͤζʾʬǤ
Ψ⤫ʤ㤯ʬǺߤޤ
˽ФƤƤ⤪ʤ٥뤫ʡ
񡡡 117ʷ 18:55:34 HomePage:ͤοʳƮ45504
kyorofumi
#45483
򸫤ΩΤĺˣοɤˡϲ̤ꤢ뤫ȤפФޤλ˽äburnside's theorem(Ѵǽʣ٤Ʋˡ)ѤƲ򤭤ޤܾ岼ѴžȰפ뤳ȤˤϵŤޤǤٶȤʤΤäƤǡ򤷤Ƥ櫓ǤϤʤΤǡʤפϤ褯狼ޤdesign⡢򤷤ΤǤΤȤ֤줺ˤޤ

٤ʤޤuchinyanǤȤޤ䤬Ҷκweb pageäƤˡ򤤤ƤäƤȤ򺣤ǤФƤޤäȡȥڥʤ򤤤ƤäΤǤ礦ΡƬ̤礭˷Ƥޤ줫ʤԤƤޤ
117ʷ 20:48:35 45505
uchinyan
#45505
Ϥꡤkyorofumi ʸ󡤤äǤ͡
Ͽ޷Τ򤢤꤬Ȥޤڤ򤱤Ƥٶˤʤޤ
κϤޤĥвȤɮ򰮤äʸޤ񤱤ΤǤʤɤ
龯ƬDzʤĤƤä褦˻פޤ

ơBurnside's theorem ǤΩΤäʹƻפФޤ
ޤ͡ηǼĤäΤʤʡȻפޤ
ؤǤʪ칶äΤǡɽ򾯤ä٤ǾȤϤǤޤ󤬡
Wikipedia˺ܤäƤ򸫤¤ǤϤʤȤΤ褦ˤ⸫ޤ
ޤ (^^; ˤˡǡФƤ»ϤʤǤ͡

ܤǸȡ#45484βˡϤˤȤäƤ褦ˤ⸫ޤ
#45479ǤϽʣ٤١ˤʤβ񤭤ޤ
#45484񤫤줿 lake ϡ
Burnside's theorem ΤäƤƤȤ줿ΤΤޤ͡
118ʲС 15:13:10 45506
Mr.ǥ
϶ϫ黲ðϢ³ڤ礭ʥԥǤ
ʤȤ򤤤׻ϲΤ褦ʤΤǤʴФȻפޤȤꤢ­פĤƤޤ

2^10=1024̤Τ
оΤΤΡ2^5=32(̤
岼оΤΤΡ2^6=64(̤
žƱˤʤΡ2^5=32(̤
Τ˶̤Ρ8̤
ä
1024-(64+32+32+24-8*29)=912
(32-8)/2+(64-8)/2+(32-8)/2+8+912/4=288

ʺϸʤƬη˴ޤǯΤˤƤ
118ʲС 15:53:46 45507
̤ꤹ1
Ϥ٤ߤǤ
ʤлɤɤw
:ͷ򤽤줾Ĥijݤ碌ƽʸǡγƷο¤Ǥ⾯ʤʤ褦ʤΤĵᡢΤȤγݤ碌ȤƲ(ʤΤȤϼΤȤǤ)
񡡡 1110ڡ 0:23:31 HomePage:ͤοʳƮ45508
⡼ޥ
#45508̤ꤹ1
ͤƤߤޤäƤ...
Ĥäƴ ^^;
100010001=1*3*7*13*37*9901
...ŬѤ1239901 ˤǤޤ ^^
100000001,10000001,1000001ʤ...
1110ڡ 23:44:37 45509
̤ꤹ1
Ǥ
ʬͽۤƤΤƱǤ
񡡡 1112ڡ 10:31:26 HomePage:ͤοʳƮ45511
Mr.ǥ
#45508⡼ޥ󤵤Ʊ褦ˤʤޤ
֤γƷο¤ܤ˾ʤʤ褦ʤΡפǤ
110000111*11*101*9901¤ˤʤ
Ǥ礦
1112ڡ 22:37:43 45512
̾
113ϴñäΤǡ⤷ƺ䡩
1116ʿ 23:58:38 45513