テスト開始!

第 1 問

 ある整数の約数は2つあります。またその整数を3倍した数の約数を全部足すと48になります。では、ある整数とはいくつでしょうか。

11

13

15

17

19


第 2 問

 1、2、4、5の書かれた4枚のカードがあります。これを使って4けたの整数を作るとき、2でも5でも割りきれない数はいくつつくることができまsか。

」イクト

」エクト

」カクト

」ククト

10個


第 3 問

 あるとき、太朗君は花子さんと公園で待ち合わせをすることにした。太朗君がある時刻に公園に時速3.6kmの速さで歩くと約束より5分早く着く。また、同じ時刻に時速1.8kmの速さで歩いていくと5分遅れるという。
 約束の時刻ぴったりに着くためには、どれだけの速さで歩けばよいか。

毎分40m

毎分42m

毎分45m

毎分48m

毎分50m


第 4 問

 次のような規則性をもった数の列があります。

(1)
(3、5)
(7、9、11)
(13、15、17、19)
  ・
  ・
  ・

 このとき、751はいくつめのカッコに入りますか。

19

21

23

25

27


第 5 問

 1995年の1月1日は日曜日でした。では、20世紀最後の日の2000年12月31日は何曜日になりますか。ただし、1996年と2000年はうるう年です。

土曜日

日曜日

月曜日

火曜日

水曜日


第 6 問

q0015.GIF (3023bytes)

 平行四辺形ABCDを上の図のように2つに分けました。すると、図のアの部分とイの部分の面積比が3:2になりました。このとき、ECの長さは何cmでしょうか。

2cm

2.5cm

3cm

4cm

4.5cm


第 7 問

 A、B、C、Dの4つの数があり、その和は90です。
 いま、Aに2を足したものと、Bから2を引いたものと、Cに2をかけたものと、Dを2で割ったものを作ると、それらは全て同じ数になりました。
 では、Cはいくつだったでしょうか。



10

20

30

40


第 8 問

 6000m離れたA、B両地から太朗君と次郎君の2人が向かい合って進みます。2人は24分後に出会ったそうです。  太朗君の進む速さが時速6kmであるとすると、次郎君は毎分何mの速さで進んでいたと考えられますか。

60m

80m

100m

150m

180m


第 9 問

 ある船が、川の上流のA町と下流のB町を往復しています。この船はA町からB町に行くのに30分かかり、B町からA町に行くのには42分かかります。では、A町から流した「ささぶね」は何時間何分後にB町につくでしょうか。

2 時 間 後

2時間30分後

3 時 間 後

3時間30分後

4 時 間 後


第 10 問

 線路にそった道路上を、一定の速さで自動車が走っています。この自動車は6分ごとに電車に追い越され、3分ごとに電車に出会います。電車は上り下りともに同じ間隔で走っています。
では、電車は何分間隔で運行されているでしょうか。

4 分  間隔

4分20秒間隔

4分40秒間隔

5 分  間隔

5分20秒間隔