㡼ߡ
²Ȥ顣ΤäƤäΤǽֻ ()
ĤؤΥŽ˺줿
913ڡ 0:05:05 30671
ޥ
ߥޥͭ̾Ȼפޤ...

¤̤ѤߤäΤǤֲ꤬˽ꤷȤΤñˤΤΡפǤ뤳ȤľʤȤäƤ23:30ˤ˸Ĥꡢޤ纹ؤȤȤˤʤäƤΤ褦ʽˤʤäƤޤޤ..m(__)m
ǤȤΤ褦ʤȤäƤ⤦äȥޥƤΤǤ23:50餤ޤɬǹͤʤʤɤΤ褺...Τ褦ʤȤˤʤäƤޤޤm(__)m
PowerBook 913ڡ 0:06:27 MAIL:masaru-y@sansu.org HomePage:30672
Ĺ
˥󥿡ͥåȤߤޤ
顢ꥢ륿ǤĤʤޤ
ϡäȤǤ
㤫뤿 913ڡ 0:07:44 HomePage:åλؤ30673
ޥ
̤餫˲֤ΰۤʤ̾ޤκȥߥˤΤǤۤɼޤΤ...m(__)mʱ礷Ƥ¿λӤ˺Ȥȡȥ֥ˤʤǽ뤿

Ȥ櫓ǡ㡼ߡ裱̤Ǥʥ󥯤ϻΤۤŽäƤޤ
PowerBook 913ڡ 0:09:36 MAIL:masaru-y@sansu.org HomePage:30674
tl
ˤƤ1ʬˤοͤġǤ͡
913ڡ 0:09:40 30675

ܥܥκͤȻפ֤ʤ̵¤ʤפǺǤޤޤ
Ĥ41/421/43Ǥ͡
913ڡ 0:10:04 30676
ޥ
㡼ߡ󤬣...ۤɺȤޤΤǡm(__)m
PowerBook 913ڡ 0:10:11 MAIL:masaru-y@sansu.org HomePage:30677
ayaka
郎Dz򤱤ΤȻפäƤޤޤ褯ͤñǤ͡
פ1ˤʤȤ߹碌ͤФΤǤ
ξ(,,)=(2,3,6)(2,4,4)(3,3,3)Ǥ͡
Ȥ߹碌Τǰ礭ʿ1äСμ¤˵տ¤1꾮ʤޤ͡
ǹͤƤȡ
(1/3)-(1/4)=1/12(1/4)-(1/5)=1/20(1/6)-(1/7)=1/42
ǺǸȤ߹碌Ǥ⸺ȤȤϰ礭ʤ
Ȥ߹碌(237)ǵտ¤41/42
Ͼγڱࡡ 913ڡ 0:13:01 MAIL:jjyhr530@yahoo.co.jp 30678
banyanyan
ǽʤäΤǹͤǤޤޤorz
Իԡ 913ڡ 0:14:47 MAIL:banyanyanmi@yahoo.co.jp HomePage:뤤²ײݻ30679
ʸ
ȤʤǤ

41/42ͤȤΤ
1/2+1/3=5/6 5/6+1/7=41/42
1/2+1/4=3/4 3/4+1/5=19/20
1/3+1/3=2/3 2/3+1/4=11/12
餤񤭽ФʤȤʤΤʤ
913ڡ 0:18:50 MAIL:kyorofumi@msn.com HomePage:ʸ30680
ʸ
#30678
ʤۤɡʤ3ĤĴ٤ФȤȤϤä狼ޤ͡
913ڡ 0:20:23 MAIL:kyorofumi@msn.com HomePage:ʸ30681

ͭ̾Ǥ͡

Ǥ⤳ϻȤǤʡ

˴ԡ
913ڡ 0:24:45 30682
⡼ޥ
#30678 ayakaæ˹
^^;v
913ڡ 0:54:21 30684
ߤ
ܣܣᣱȤΤͭ̾ʤΤǡäȤä
¨ʬȤϻפʤäɡ˺ƤΤ
ˤġ
913ڡ 1:17:53 30685
doba
#30684 ⡼ޥ󤵤

#30678ayakaϡޤǤ⤢ĤˡǤäơ
41/421δ֤ͤˤʤȹ礻¸ߤʤȤˤϤʤäƤʤȻפޤ衣
913ڡ 1:40:41 30686
ǥ
#30686
>#30678ayakaϡޤǤ⤢ĤˡǤäơ 41/421
֤ͤˤʤȹ礻¸ߤʤȤˤϤʤäƤʤȻפޤ衣

ƱǤ
913ڡ 7:30:23 MAIL:cacrh525@hcn.zaq.ne.jp 30687

礭ʬʤΤ
1/2+1/3=5/6ʤΤǤ⤦1/7­ʤ
1/2+1/3+1/7=41/42
ǿϹͤƤޤ
ϸɤߤޤ
ޤɤޤɤߤޤm(_)m
ļˡ 913ڡ 8:13:08 30688
⡼ޥ
#30686,#30687
doba󡢥ǥء
ʤΤʤ錄ˤϡʬ줬ǤΤǡʬο1礭ʿͻнʬΤ褦ʵƤޤޡ㤤ʤΤǤ^^; Orz
913ڡ 9:06:13 30689
ϥ饮㡼ƥ
Ϥ褦ޤ

ǶᡢܥɤϤޤޤ
⤳ФǤȤ狼ʤݤ
ȥѥǤܥɻߤˤФʤС
913ڡ 9:35:29 HomePage:湩ؤ˥30690
uchinyan
Ϥˤϡơϡ
ɤDz򤤤褦ʵޤȾпؤǤʴǤΤʡ

Ϳ줿ϡ˴ؤоΤʤΤǡ <= <= ȤƤ򼺤ޤ
ޤ餫ˡ 2 ʾǡǤͤտ¤礭ʤޤ
ʲƧޤƤξʬǤ
1) = 2 ξ
1-1) = 2 ξ
ɤäƤ⡤տ¤ 1 ĶƤޤΤԲġ
1-2) = 3 ξ
= 6 ΤȤտ¤ 1 Ǥǡտ¤ 1 꾮ƺʤΤ = 7 ΤȤ
ΤȤտ = 1/2 + 1/3 + 1/7 = 41/42 Ǥ
1-3) = 4 ξ
= 4 ΤȤտ¤ 1 Ǥǡտ¤ 1 꾮ƺʤΤ = 5 ΤȤ
ΤȤտ = 1/2 + 1/4 + 1/5 = 19/20 Ǥ
1-4) >= 5 ξ
5 <= <= ʤΤǡ餫ˡ1-3)⾮ʤꡤͤɬפϤޤ
2) = 3 ξ
2-1) = 3 ξ
= 3 ΤȤտ¤ 1 Ǥǡտ¤ 1 꾮ƺʤΤ = 4 ΤȤ
ΤȤտ = 1/3 + 1/3 + 1/4 = 11/12 Ǥ
2-2) >= 4 ξ
4 <= <= ʤΤǡ餫ˡ2-1)⾮ʤꡤͤɬפϤޤ
3) >= 4 ξ
3-1) >= 4 ξ
4 <= <= ʤΤǡ餫ˡ2-1)⾮ʤꡤͤɬפϤޤ
ʾǤ٤ƤǤäơϡ41/42, 19/20, 11/12 Ǥ
41/42 = 410/420 > 399/420 = 19/20 = 57/60 > 55/60 = 11/12
ʤΤǡտ¤ 1 꾮ʤΤ 41/42 ˤʤޤ
ͥνȡ 913ڡ 10:27:47 MAIL:uchi@sco.bekkoame.ne.jp 30691

餫˿ؤǤ

a<=b<=cȤư򼺤ʤ

1/a1/b1/c1()
a,b,c()1/a1/b1/cΤΤȤ롣
ΤȤ1/c1/(c1)Ǥ뤬a,b,cξ狼
1/a1/b1/(c1)>=1()
(⤷1/a1/b1/(c1)<1 Ǥ
1/a1/b1/c1/a1/b1/(c1)1Ȥʤꡡ1/a1/b1/cκ̷)
()
1/a1/a1/(a1)>=1/a1/b1/(c1)>=1
ʤ
1/a1/a1/(a1)>=1
aΣǤ롣򤯤ȡaa1,2,3
1)a1ΤȤ
餫Ŭ
2)a2ΤȤ
()ꡡ1/21/b1/(c1)>=1
ʤ1/b1/(c1)>=1/2()

ʲƱͤ()ꡡ1/b1/(b1)>=1/2
򤭡bθʤ()()c롣

(a,b,c)(2,3,7),(2,4,5),(3,3,4)ޤ롣
줾εտ¤ϡ41/42, 19/20, 11/12
줾1 1/42, 1/20, 1/12Ȥʤꤳο־ʤ41/42Ǥ롣
913ڡ 11:00:33 30692
uchinyan
ǼĤɤߤޤ

#30671#30672#30682
䥹ߥޥͭ̾Ȼפޤ...
ɤ⤽Τ褦Ǥ͡ΤäƤͤ¿äΤ⡣
Ǥ⡤Ĥ⥪ꥸʥФǤѤǤ礦ޤˤϤΤ⤤ΤǤ (^^;

#30676
䣴Ĥ41/421/43Ǥ͡
ϤΤˡ41/421/43 = 1805/1806 Τ褦Ǥ

#30678
˴ؤ¿ޤǤ¿ʬ餫ʡɤϡ#30691ƱΤ褦Ǥ

#30686#30687
#30678ayakaϡޤǤ⤢ĤˡǤäơ
41/421δ֤ͤˤʤȹ礻¸ߤʤȤˤϤʤäƤʤȻפޤ衣
Τ˸̩ˤϤǤ
#30689
䤽ʤΤʤ
錄ˤϡʬ줬ǤΤǡʬο1礭ʿͻнʬΤ褦ʵƤޤ
ayakaϡϡ餫ȤƾʤƤ롤ȤȤǤ礦
ľˤ뻻ȤƤϡǤ⤤Ȥʡ

#30691
βˡ

#30692
øؤǼȤˡܤ׻ɤäƤޤ󤬡¿ʬȻפޤ
ޤǤʤƤ⡤#30691餤ǽʬǤϤʤʤ
ͥνȡ 913ڡ 11:14:12 MAIL:uchi@sco.bekkoame.ne.jp 30693
doba
#30693 uchinyan
ayakaϡϡ餫ȤƾʤƤ롤ȤȤǤ礦
䤬Τ褦˽񤤤դϡΤ褦ʤΤǤ

1/a+1/b+1/c ʤabcˤȤޤ
ξ硢դ餫
1/a+1/b+1/c1 1/a+1/b+1/(c-1)1Ǥ

ʤΤϡλǤϤޤǤ
1/a+1/b+1/(c-1)1
Ǥäơ
1/a+1/b+1/(c-1)1
ȤݾڤϤʤȤȤǤ

ºݤˤϡ
1/a+1/b+1/c1 1/a+1/b+1/(c-1)1
Ω褦(a,b,c)Ȥ
(3,3,4),(2,4,5),(2,3,7)
ΤߤǤäơΤξ¤
1/a+1/b+1/(c-1)1
ΩƤΤḁ̇̄饤ȤʤäƤޤ
ǽ餫
1/a+1/b+1/c1 1/a+1/b+1/(c-1)1
Ȥʤǽ̵뤷ƤޤΤϡŪ˴ְäƤޤ

줬ĤǤϤʤĤοȤʤȡ㤨
1/3+1/3+1/5+1/81
1/3+1/3+1/5+1/71
Τ褦ʥθоݤȤɬפޤ
âºݤκͤ1/2+1/3+1/7+1/43Τ褦ʤΤǡ
ǤޤƤ̥饤ǤϤΤǤ
İʾǤƱͤΥѥǤȤݾڤ
ɤˤˤʤʤϡˤϡ
ʤ餫ΤȤɬפǤ
913ڡ 12:08:21 30694
uchinyan
#30694
Ϥä̤ʤΤϾΤƤȻפޤ
#30691餷ơ餫ˤΤ褦ʾϤʤȻפޤ
ͥνȡ 913ڡ 12:23:39 MAIL:uchi@sco.bekkoame.ne.jp 30695
doba
#30695
#30691餷ơ餫ˤΤ褦ʾϤʤȻפޤ
̤Ǥ
Ĥޤꡢ#30691Τ褦ƻʾʬܼǤäơ
򤻤˺ǽ餫
פ1ˤʤȤ߹碌ͤФΤǤ
ȤΤϴְ㤤ȤȤǤ
913ڡ 12:57:49 30696
uchinyan
#30696
ʤۤɡΤȤäΤǤ͡ɡ#30693
˴ؤ¿ޤǤ¿ʬ餫ʡ
Ƚ񤤤ʬϡ΢Ťꡤayaka餫ȻפäΤȲᤷΤǤ
򤢤ޤˤƤϤʤ衤ȤȤǤ͡

ʤͤĤξϡäȤǡܤˤȤäȺ٤ʬˤʤޤ
̤ͤϡץǤǧƤޤȻפޤ

̤ˤϡɤʤǤ礦ޤˡΤǤ礦ʬ񤷤
ͥνȡ 913ڡ 13:24:37 MAIL:uchi@sco.bekkoame.ne.jp 30697

ֻ˥󥸡פǤϡֻפŪ˸̩˲򤯤ȤɬפʤǤ
dobauchinyanεϡǤʤͤˤ񤷤ޤ
913ڡ 14:36:22 30698
uchinyan
#30698
ֻ˥󥸡פǤϡֻפŪ˸̩˲򤯤ȤɬפʤǤ
ޤǤָĿŪˤϡפǤɬפʤȻפäƤޤ
dobauchinyanεϡǤʤͤˤ񤷤ޤ
ʬޤ

ȡϡ#30693ǡ
ayakaϡϡ餫ȤƾʤƤ롤ȤȤǤ礦
ľˤ뻻ȤƤϡǤ⤤Ȥʡ
Ƚ񤭤ޤ

Ǥ⥦ϥǤ̩ľˤʤȤΤܲ (^^;
Τϡ̯ʤȤʤǤͤ
ͥνȡ 913ڡ 15:01:21 MAIL:uchi@sco.bekkoame.ne.jp 30699

uchinyan󡢤ֿꡢ꤬Ȥޤ
ȤΤϻϰϤĶƤȻפޤ
ǤʤƤ̿ͤƤ뤳Ȥ狼äƤФǤ
913ڡ 15:17:16 30700
Ѥ
˺ƿƤޤ
ʬ򤷤ƹͤޤ
֡ 913ڡ 17:21:44 HomePage:ʥڡ30701
25no12
᤺餷ȤƤפǤ͡
uchinyanؤƱǤ

εտܥεտܥεտӤȤ
ޤϥʲϥʲȤư򼺤ʤ
ʤȤ⣱ĤΤȤӤϣʾդʤΤǡĤοϤ٤ƣʾ

Ĥο٤ƣʾΤȤӤϣ/ʲ
㤨СʥˡʣˤȤȡӡᣱ/䣳/顢ĤοΤʤȤ⣱Ĥϣʲ
äơᣲޤϡ

ᣲΤȤ
ʥˡʣˤΤȤӤϣʾդʤ
ʥˡʣˤΤȤ֤Ĵ٤ȡ᣷ΤȤӤǡΤȤӡᣴ/ʡ
ʥˡʣˤΤȤ֤Ĵ٤ȡᣵΤȤӤǡΤȤӡᣱ/㣴/
ʾΤȤӤϣ/ʲǡϡʡˤ꾮

ᣳΤȤ
ʥˡʣˤΤȤ֤Ĵ٤ȡᣴΤȤӤǡΤȤӡᣱ/㣴/
ʾΤȤӤϣ/ʲǡϡʡˤ꾮

ʾˤꡢʥˡʣˤΤȤӤǡϣ/

СˡפäơعϰϤǤ͡
ؤΤȤ˥饹Τߤʤǡ֥ϥꡢϥꡢե졢ϥۡפȲΤäͷǤΤǡؤǽä褦ʵΤǤ
913ڡ 17:39:25 30702
25no12
ayakaβ˴ؤ롢dobauchinyanεdoba󤬤ä뤳ȤŪ˻ޤ

ayakaβϡ1/a+1/b+1/cդȤa<=b<=cȤơ1/a+1/b+1/(c-1)=1ˤʤסʡˤȤȤƤޤ
ä餫Ǥ
ʡˤä꤬ääƤȻפޤ

ŪˤϡʬĴٿԤгΤˤΤ褦ˤʤäƤ褦Ǥ뤳Ȥˤäƽʬ뤳ȤǤ顢ʬʬʤơ餫פȸäƤޤäƤϡñ񤯤Τ纹ޤ

N=4ξޤޤʡˤΩ褦ǤN=5ʾǤⲾˡʡˤΩȤơ뤳ȼΡ٤ʿؤȻפޤ
㤨СʡˤɤΤ褦NΤȤΩ뤫ʤ꤬ä顢󡢥ȤΤǤϤʤǤ礦
913ڡ 18:08:55 30703
uchinyan
#30703
ȡΤʤ褦˽񤤤Ƥȡ⡤ŪˤdobaΤääƤ뤳ȤˤŪ˻Ǥ
ayakaεޤȽ񤤤ΤϤΤǤ

䤬ˤΤϡƱǡǤɤޤǤɵ᤹٤ʤΤʡȤǤ

ʤN = 4 ξϡ빽ݤˤʤޤʬǼºݤ()ȤϳǧѤߤǤ
N = 5 ξϡʬѤʤΤǤäƤޤ

ˤ衤Ūˤ뤦ޤˡϤʤΤǤ礦
ͥνȡ 913ڡ 18:33:17 MAIL:uchi@sco.bekkoame.ne.jp 30704
doba
ڤӡΡᣴξϡޤȤȼΤ褦ʷȤʤޤ

Ρᣱ1/2ʡ1 - 1/2
Ρᣲ1/2 + 1/3ʡ1 - 1/6
Ρᣳ1/2 + 1/3 + 1/7ʡ1 - 1/42
Ρᣴ1/2 + 1/3 + 1/7 + 1/43ʡ1 - 1/1806

³ͤȡΤ褦ͽۤΩޤ

ֿ{a(n)},{b(n)}Τ褦Ȥ롣
a(1)2
a(n+1)a(n)^2-a(n)+1
b(1)2
b(n+1)b(n)^2+b(n)

ΤˤĤơ
x(1)x(2)ġx(N)Ǥꡢ
p=1/x(1) + 1/x(2) + + 1/x(N)
p1褦ʣθĤμx(1)x(N)ͤȡ
pˤʤΤϡ
x(k)=a(k)k=1,,Nˤξǡ
ΤȤp=1-1/b(N)Ȥʤ롣

ʲޤǤͽۤǤ
Υ¾ξ٤ä˸뤳Ȥ򤵤ˤĤɲäǡ
ҤäN˴ؤŪǼˡǾǤʵϤޤ
Ūʡ빽äʵˤʤꤽǤ

ɲä̿Ȥơ줬ФʤȻפäƤΤϡ
Τ褦ʤΤǤ

ּx(1)x(N)x(1)x(2)ġx(N)Ǥꡢ
1/x(1) + 1/x(2) + + 1/x(N) 㣱
1/x(1) + 1/x(2) + + 1/(x(N)-1) 棱
Ȥ
1/x(1) + 1/x(2) + + 1/x(N)1-m/nʤm/nϴʬ
Ȥȡnb(N)

ϡäȤʾ帡Ƥ뺬Ϥޤ(^^;
ľŪˡb(N)礭ʤΤǡ
ȿ㤬ĤȤϤʤʤפޤ
913ڡ 19:20:50 30705
25no12
a1,a2,...,an
rn=1/a1+1/a2+...+1/an<1
max(rn)=RnȤơΤȤΡa1,a2,...,an=(An1,An2,...,Ann)ȤȡAn1<=An2<=...<=Ann
ʰ̤nĤؤγĥ

ͽۤȤƤϡ
A(n+1)i=Anii=1,2,...,nˡʡ
Pn=An1An2Ann An1AnnޤǤѡˤȤơA(n+1)(n+1)=(Pn)+1ʡ
ΩǤ

ºݡ
n=1A11=2
n=2(A21,A22)=(2,3)
n=3(A31,A32,A33)=(2,3,7)
n=4(A41,A42,A43,A44)=(2,3,7,43)
ޤǤϾʬʬäƤޤƤΤȤʡˤΩƤơ
ˡ3=2+1, 7=2*3+1, 43=2*3*7+1ǡʡˤΩƤޤ

ǡͽۤŪǼˡǾǤȤΤǤ񤷤Ǥ
ȤꤢʡˤꤹмưŪˡʡˤȤʤޤʡˤΤȤǤޤ

ʤߤ˾μΩȤ
1/An1+1/An2+...+1/An(n-1)+1/((Ann)-1)=1ΩƤޤ

n=4ޤΩ뤷θԤ˻פޤ

ʤߤuchinyan󤬿ŪˤϤΤ褦ˤͤǤ뤳ȤϾΤƤޤ䤬dobaŪ˻ȤΤϡŪˤȤȤǤ
913ڡ 20:37:56 30706
uchinyan
#30705 doba
#30706 25no12
ꡤͽۤΤޤȤʤɡ꤬Ȥޤ
ŪˤƱȻפޤϡ#30706ͽۤƤޤ

ƤǥǤ
p(n) = 1/a(1) + 1/a(2) + ... + 1/a(n)
Ȥơp(n) = k/(k+1) Ƚ񤱤ʤСp(n) + 1/(k+1) = 1 ʤΤǡ
1 꾮κˤϡa(n+1) = k+2 ȤȤˤʤꡤ
p(n+1) = p(n) + 1/a(n+1) = k/(k+1) + 1/(k+2) = (k^2 + 3k + 1)/(k+1)(k+2) = {(k+1)(k+2) - 1}/(k+1)(k+2) = 1 - 1/(k+1)(k+2)
ȤʤΤǡ
p(1) = 1 - 1/2 = 1/2, p(2) = 1 - 1/6 = 5/6, p(3) = 1 - 1/42 = 41/42, p(4) = 1 - 1/(42*43) = 1 - 1/1806 = 1805/1806
ȹ碌ơηϡͽۤ˹פȻפޤ
dobaΤŦΤ褦ˡη󤫤鳰ΤΤäϤñˤϤޤ
ºݤ˾ʬԤäи餹ȡ
ŪǤʤʬ줬ͽۤͤ꾮 k/(k+1) Ϥޤढηˤʤꤽǡ
ʤСͽۤͤ꾮ʤ뤳ȤǤ
Ǹʬʬ¿ͽ۳ηǤνиβǽǤϰǤ桤ȤǤ
ͥνȡ 913ڡ 21:50:15 MAIL:uchi@sco.bekkoame.ne.jp 30707

1/2+1/3+1/6=˶ˤⵤդޤ
ȤȤϤäȸ餻ФǤ͡
ָŪʸ餷1/61/7ˤ뤳ȤǤ
ȸȤ41/42
913ڡ 21:35:39 30708
25no12
a1,a2,...,an
rn=1/a1+1/a2+...+1/an<1
max(rn)=RnȤơΤȤΡa1,a2,...,an=(An1,An2,...,Ann)ȤȡAn1<=An2<=...<=Ann
ʰ̤nĤؤγĥ

ͽۤȤƤϡ
A(n+1)i=Anii=1,2,...,nˡʡ
Pn=An1An2Ann An1AnnޤǤѡˤȤơA(n+1)(n+1)=(Pn)+1ʡ
ΩǤ

ºݡ
n=1A11=2
n=2(A21,A22)=(2,3)
n=3(A31,A32,A33)=(2,3,7)
n=4(A41,A42,A43,A44)=(2,3,7,43)
ޤǤϾʬʬäƤޤƤΤȤʡˤΩƤơ
ˡ3=2+1, 7=2*3+1, 43=2*3*7+1ǡʡˤΩƤޤ

ǡͽۤŪǼˡǾǤȤΤǤ񤷤Ǥ
ȤꤢʡˤꤹмưŪˡʡˤȤʤޤʡˤΤȤǤޤ

ʤߤ˾μΩȤ
1/An1+1/An2+...+1/An(n-1)+1/((Ann)-1)=1ΩƤޤ

n=4ޤΩ뤷θԤ˻פޤ

ʤߤuchinyan󤬿ŪˤϤΤ褦ˤͤǤ뤳ȤϾΤƤޤ䤬dobaŪ˻ȤΤϡŪˤȤȤǤ
913ڡ 21:50:28 30709
25no12
ߤޤ󡢽ʣƤˤʤäƤޤޤ
IEΡֹפʤߤǤ͡
ѥꤷƤʤΤǾäʤǤäƤ館Τʡ

uchinyan󡢤֤η󤫤鳰ΤΤäϤñˤϤޤפʬ񤷤Ǥ͡
ʤߤ˵ǼˡβΩĤ(30706ε򤽤ΤޤѤ)
A(n+1)(n+1)<=(Pn)+1ޤǤϸޤ
ѤƲʤʤϺƤޤƲᤰˤʤäƿʤߤޤ
ߤĤ֤ˤץǤȤˤΩǤ
913ڡ 22:00:13 30710
SUPER SPECIAL SEMTEX
ñ
1/2+1/3+1/6ᣱ˵դФǤޤ
913ڡ 23:20:10 30711
⡼ޥ
äȹͤƤߤޤ^^
11/m ¤ǰֶ᤯ɽȤͤ롣
1ĤΤȤϡk Ĥʬ䤷k-1/k=1/m ȤʤǾmФ褤
k-1 k ϸߤǤʤΤǡk-1=1k=2
2ĤΤȤϡĤ1/2 k ʬơk-1ʬ1/m ˤʤǾmФ褤
Ĥޤꡢ(k-1)/2k=1/m ʤΤǡƱͤˡk-1=2 ȤʤꡢΤȤm=k=2+1=3
Ĥˡ1/2*3 k ʬơ k-1 Ĥ1/m ˤʤǾ k Ф褤
Ĥޤꡢ(k-1)/2*3*k=1/m Ʊͤˡk-1=2*3m=k=2*3+1=7
Ĥϡm=2*3*7+1=42
ʲƱͤˡ2*3*7*42+1ȹͤФΤʡ
914ʶ 2:27:47 30712
banyanyan
٥äͭ̾ʤǤ
a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2
http://en.wikipedia.org/wiki/Sylvester%27s_sequence
Իԡ 914ʶ 3:23:10 MAIL:banyanyanmi@yahoo.co.jp HomePage:뤤²ײݻ30713
Ф
Ĥˤʤפä٤ʤˤǤޤޥ뤵Ƕδĥꥹ
914ʶ 7:21:16 30714
uchinyan
#30712
2ĤΤȤϡĤ1/2 k ʬơk-1ʬ1/m ˤʤǾmФ褤
ʤɤǤȡؤʤΤǾ
ǽʬʤȤȼΤδΤǤʤỌ̇̄ʤǤ
ƤޤСϡޤ餫Ǥ礦

#30713
󤢤꤬Ȥޤ
2, 3, 7, 43, 1807, ... ΤȤǤ͡٥äƸǤΤʤä
աࡤεɤ¤ǤϡϺܤäƤޤ(ʸϺܤäƤ롣)ɤ桹ͽۤ褦Ǥ͡
ͥνȡ 914ʶ 12:34:15 MAIL:uchi@sco.bekkoame.ne.jp 30715
⡼ޥ
"30715
uchinyanOrz
ʤǤ
ʬ11/m äƹԤäƤ¤1˸¤ʤŤƹԤȤͤ顢
1/2+Ĥ1/21/mɽΤ򼡤˹ͤФȻפǤ
ΤȤϡ1/2 k ʬȤ(k-1)/k=1/m ΤȤ˼Τǡʲά
η֤ˤʤȻפޤ
ǤϾˤʤäƤʤǤ礦 ^^;
914ʶ 10:25:28 30716
uchinyan
#30716
doba#30694
ͥνȡ 914ʶ 10:56:39 MAIL:uchi@sco.bekkoame.ne.jp 30717
⡼ޥ
#30707
>p(n) = 1/a(1) + 1/a(2) + ... + 1/a(n)
Ȥơp(n) = k/(k+1) Ƚ񤱤ʤСp(n) + 1/(k+1) = 1 ʤΤǡ
1 꾮κˤϡa(n+1) = k+2 ȤȤˤʤꡤ
p(n+1) = p(n) + 1/a(n+1) = k/(k+1) + 1/(k+2) = (k^2 + 3k + 1)/(k+1)(k+2) = {(k+1)(k+2) - 1}/(k+1)(k+2)

Ĥޤꡢp(n)=(k-1)/k ɽa(n+1)=k+1 Ȥȡ
p(n+1)=(k(k+1)-1)/k(k+1)
ʤΤǡ
k=a(1)*a(2)**a(n)ȤС
a(n+1)=a(1)*a(2)**a(n)+1Ȥʤꡢ
a(n)=a(1)*a(2)**a(n-1)+1 顢
a(n+1)-1=(a(n)-1)*a(n) 顢
a(n+1)=a(n)^2-a(n)+1
ȡ
٥ΰ̼
a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2
äƤΤޤޤɤ͡^^;
914ʶ 18:13:45 30718
粬ҹ
פ֤ޤʡˡ㡼ߡ󣱰̤ǤȤޤҥǡҤȣԣ蘆ޤƤΥȥåסǤ
ϻäݤ򤱤ޤʬǣˤʤ뼰ͤޤ

ܣܣᣱϣ꾮ʤΤǡ򣱡ˤƷ׻
ܣܣᣴ

Ƕϼ٤⤤Ǥ͡ӡ̤֤ޤʡ
914ʶ 18:59:16 30719

տιͤΡϰϤǤϤʤ褦ʡ

1/2+1/4+1/7+1/14+1/28=1 ⴰǤ͡
915ڡ 0:57:24 30720
nno
ä줿ʬα(?)ˡ
äȻ䤫ȴԤƤǤɡ
äȥͥ
915ڡ 1:02:19 30721
ayaka
褯ͤ顢#30678פǤ͡
Τ˵տιפ1礭ʤȤ߹碌
(2,3,3)(2,3,4)(2,3,5)(2,2,x)xϼͳȤ礬ޤ͡
(2,2,x)ξϡ23Ѥʤ¤1礭ʤ롣
(2,3,x)x=345ξ硢ʬѤϡ7ޤѤʤ¤տ¤1ʾˤʤޤ͡
3ʬѤϡ(234)(2,4,4)(2,4,5)ȤʤԲǽǤ͡
¤ϡ񤤤Ƥ顢(,,-1)εտ¤1礭ơ(,,)εտ¤1꾮ɤ褦ȹͤͤƤޤҤäȤ餽ʾ⤢ΤʤȻפäơ
Ͼγڱࡡ 915ڡ 3:04:21 MAIL:jjyhr530@yahoo.co.jp 30722
ayaka
#30722
(2,4,5)פǤ˷ϽФƤޤ͡
ɽƤ顢äȻפäƤޤޤ
Ͼγڱࡡ 915ڡ 3:06:09 MAIL:jjyhr530@yahoo.co.jp 30723
ayaka
ˤƤ⥷٥οäȻפޤ
5ǤƤΤΰפȤDz夬餤ȤΤǡޤθǤϡαDzδưΤǤ
Ͼγڱࡡ 915ڡ 3:08:24 MAIL:jjyhr530@yahoo.co.jp 30724
⡼ޥ
#30721
>1/2+1/4+1/7+1/14+1/28=1 ⴰǤ͡

줬ȿˤʤޤ͡
褦ϡ=1 äơ礭ʬ1ΤΤ¤ˤʤ뤳ȤȤϰ㤦äƤȤϸ^^; 1ȤκǤʤ褦ˤäƤͤǤȤȤʤ㤤ʤǤ͡錄ˤϡ#30707ιͤǤ褦˻פǤɡ
915ڡ 9:05:05 30725
uchinyan
#30725
ϤȤǤ
#30707ϡޤǤ¤ k/(k+1) ˤʤäƤˤϤޤȻפޤʬºݤˤäƤߤȡ줫鳰ФƤޤ
N = 4 ξϡ⾮ʤ뤳Ȥ׻ʬޤ̤ N ˵򤦤ޤĥǤʤˤʤǤ

#30722
ȡdoba#30678ؤΤŦϡְäƤΤǤϤʤơ
ԽʬǡŪ˸̩˸ŪˤȤȤǤ
Ȥơɤޤ˹äƲ񤯤ˤϡ;Ϥȡϻפޤ
ϡºݤ˻򰷤äƤΤոԤĤʤΤǤ礦͡
ͥνȡ 915ڡ 12:21:26 MAIL:uchi@sco.bekkoame.ne.jp 30726
⡼ޥ
#30726
>ޤǤ¤ k/(k+1) ˤʤäƤˤϤޤȻפޤ

¤ʾɽ뤳ȤäƤޤ͡
915ڡ 13:18:39 30727
uchinyan
#30727
¤ʾɽ뤳ȤäƤޤ͡
֤ʾפǤϤʤơ֤ʳפǤ
ݤʤΤǽ񤭤ޤ󤬡̣ʤСN = 4 Ǽºݤ˾ʬäƤߤƤ
1/a + 1/b + 1/c ޤǤǡk/(k+1) ηˤʤʤθƤɬפˤʤޤ
󡤷̤ȤƤϡ1/a + 1/b + 1/c + 1/d ٥ξ⾮ʤޤ
ǽ餫餳ξΤƤƤޤΤ̵ΤƤƤͳʬʤǤ

ʤk/(k+1) ηˤʤäȤƤ⡤ k ٥б⾮ʤ뤳Ȥ򼨤ɬפޤ
ͥνȡ 915ڡ 13:56:00 MAIL:uchi@sco.bekkoame.ne.jp 30728
⡼ޥ
#30728
ʳʲʤͤɬפϡξϤʤ󤸤ʤΤʡ?
ͭ顢ͤϤηɽϤȡ
ͤ㤤Ƥ餴Ȥʤ^^;
915ڡ 13:52:40 30729
uchinyan
#30729
䤽ʳʲʤͤɬפϡξϤʤ󤸤ʤΤʡ?
⤽⡤ְʲפǤ뤫ɤʬޤ
ͭ顢ͤϤηɽϤȡ
̤ȤƤϤΤǤȼȤΥݥȤȻפޤ
ͥνȡ 915ڡ 13:59:01 MAIL:uchi@sco.bekkoame.ne.jp 30730
粬ҹ
#30720
ƤߤеտϻǻȤʤޤʡ
1/2+1/4+1/7+1/14+1/28=1 ϤǤ͡ٶˤʤޤʡ
915ڡ 15:56:43 30731
⡼ޥ
#30730
ͭ¤1ˤäȤᤤȤηϡn/m ɽ졢
1<=n<=m-1 顢n/m κͤϡ餫(m-1)/m
ĤޤꡢηɽΤʤ顢ʳ˹ͤɬפϤʤǤ͡^^;
ޤ򤷤ƤȤΤʡ
ޤ٥(k-1)/k Ƥʤ顢ʤȤΰĤˤʤޤ͡äơ¤Ϻʤ顣¤ɽʳˤʤäƤ줿顢ʬʤȤޤ󤱤ɡ^^;
915ڡ 20:08:17 30732
25no12
⡼ޥ󤵤Ρִ㤤פܼŪϡ(n+1)Ĥμ(a(1), a(2), ..., a(n+1))εտ¤ȤʤȤ(a(1), a(2), ..., a(n))εտ¤nĤμεտ¤κͤǤȡַդƤסʤȤФ⤷ޤ󤬡ˤȤȻפޤ

Ūˤϡn=13ǤϳΤˡǽҤ٤褦ˤʤäƤơ礭nФƤƱȤΩȤͽۤƤޤuchinyanʸ̤餽Τ褦ˤͤȻפޤˡ
ͽۤ뤳ȡפȡ־뤳ȡפ̤ΤȤǤʥեޡͤƤФȻפޤŪĹ֤򤫤ƾ줿ߤǤɡˡ

>>ޤǤ¤ k/(k+1) ˤʤäƤˤϤޤȻפޤ
>
>¤ʾɽ뤳ȤäƤޤ͡

Ǥ֤ޤǤ¤פʬ褯Ƥ֤ޤǤ¡פϡnĤμεտ¤κͤǤȤϸ¤ʤΤǡk/(k+2)Ȥk/(k+3)ȤηˤʤäƤäƹͤʤФޤ

ޤm/(m+2)>k/(k+1)ʤm¸ߤ뤳Ȥ餫Ǥ͡ñm2k礭ФǤ

ޤ#30732Ǥn/mηɽͭΤ1̤ΤΤΤΤΤϳΤ(m-1)/mǡϡ餫פǤȻפޤͿ줿mФơnĤμεտ¤(m-1)/mɽȤϸ¤ޤ
915ڡ 21:05:15 30733
25no12
ɵǤ

䤹ʤȤΰĤˤʤޤ
̵ΤǡֲפǤϤʤָפǤ

ʤߤˡͤuchinyanϤߤʤʻˤͽ̤ʤ顢nĤμȤ߹碌ϡ2, 3, 7, 43, 1807, ...Τ̤ˤʤ뤳Ȥϴñ˾Ǥޤ
ͤͽۤС
(n+1)Ĥμ(a(1), a(2), ..., a(n+1))εտ¤ȤʤȤ(a(1), a(2), ..., a(n))εտ¤nĤμεտ¤κͤǤפΩޤ
ΤȤ(n+1)ܤμϰŪ˷ޤΤǡŪǼˡ顢1̤˷ޤ뤳Ȥޤ
915ڡ 21:13:10 30734
⡼ޥ
#30733,#30734 250n12 ءOrz
>(n+1)Ĥμ(a(1), a(2), ..., a(n+1))εտ¤ȤʤȤ(a(1), a(2), ..., a(n))εտ¤nĤμεտ¤κͤǤȡ

ȤϸäƤʤĤǤɡ
錄ϡĤƤĤ̵äơ(k-1)/k Ȥͤˤʤk¸ߤФ줬ΤˤʤǤ硩äƤäƤ櫓Ǥºݤˡ¸ߤ櫓ǡʳȤ߹碌̵ɤޤǤʬʤȤäƤޤ

ޤ
>m/(m+2)>k/(k+1)ʤm¸ߤ뤳Ȥ餫Ǥ͡
⡢դäƤʤ褦ǤͤȤ (k-1)/k ʾΤΤϤޤ͡⡢錄פˡm/(m+2)<(m+1)/(m+2) =(k-1)/k 㤢ʤǤ礦

>ʤߤˡͤuchinyanϤߤʤʻˤͽ̤ʤ顢nĤμȤ߹碌ϡ2, 3, 7, 43, 1807, ...Τ̤ˤʤ뤳Ȥϴñ˾Ǥޤ
ͤͽۤС
(n+1)Ĥμ(a(1), a(2), ..., a(n+1))εտ¤ȤʤȤ(a(1), a(2), ..., a(n))εտ¤nĤμεտ¤κͤǤפΩޤ
ΤȤ(n+1)ܤμϰŪ˷ޤΤǡŪǼˡ顢1̤˷ޤ뤳Ȥޤ

ʬϤ錄ˤɤʬäƤޤäƸĤƹԤƤޤOrz^^;

915ڡ 23:20:34 30735
⡼ޥ
ɵǤ
Ϳ줿mͤƤǤϤʤäơnμεտ¤κͤϡk¸ߤ
(k-1)/k ɽȤäƤĤǤ
k k=a(1)*a(2)**a(n)ͤΩƤ󤸤㤢ޤ󤫤ä^^

顢դäɡ k 礭 k' (k'-1)/k' ä¸ߤʤȤɤƸΤäƤȤ򤪤ääƤǤ͡
äʬޤλǤ
uchinyan250on12ϤᡢߤʤޤޤOrz ^^;;
915ڡ 23:33:08 30736
banyanyan
#30731
տϰϤǤʤȤȡʬΤ껻Ǻ褦ʵޤġġ
Իԡ 916 0:37:42 MAIL:banyanyanmi@yahoo.co.jp HomePage:뤤²ײݻ30737

uchinyanȤء
ޤٶʤΤ绨ĤʤΤǤ̿ηˤĤơ
ޤŪ˷Ǥʬΰ̿ϡĤͤˣǤΰ̿ˤʤޤ
εդϸޤ
ǿѤξϡʬޤ
ξϣȣΰ̿ʬޤ
̿ǿ餫˽󷲤Ǥ
ꡢ̿ʣˤʬϡʣ䣳˶򤬰
Ȥʤꡢʬˤʤޤ
ʬȤϣǤǤդθФȣȤΩķǤ
̿ΤۤǤ궦οϣܣʣᣳˤǡ
줬ʤޤ
äơ񤫣Ǥ
ܣʤʣݣˤʤΤǡݣܿˤʤޤ
ξϣݣᣴǣܿˤʤʤΤǣܣᣱǡ
ᣰȤʤꡢ򤬰ĤȤʤꡢ̿Τۤʬ
ʤޤ
ơʬȤʬǾģǡȤĴʥ٥뷲
λϡ򴹻ҷˤޤߤޤʸ򴹻Ҥ뷲
򴹻ҤȤϣǣǡʣǡǤϵոˤηηǤθǤ
̿ηθ顣
̿η¡θȤȤ
¤ʬϴ˼ޤΤǡ
ʤȤäƤˤʤäƤޤ󤬴
ǡͤȡ
Ĥޤꡢ
ǣǡϥ٥뷲
¤Ͻ󷲤ʤΤǣ餫
Ʊͤˣǡ¤⥢٥뷲
äơᡢ¤Ȥ
򴹻aba'b'¤ޤߤޤ
ģ¡ñ̸ˤʤΤǡ
ǣǡ
Ȥʤ
ʣˡᡰ⡰Ȥʤ
줬ȤʤˤϣǤʤȤޤ
äƣΰ̿ϣ
跲Ǥϣ⤫̿ν󷲤ˤʤޤ
ȻꡢΣȣФ򸫤Ʋ
ttp://www32.ocn.ne.jp/~graph_puzzle/1no48.htm
ĹȿޤǤʡˣ
ļˡ 917ʷ 18:27:10 30738
uchinyan
#30738
󡤤꤬ȤޤϤޤޤٶ­ʤΤǺĤǤ

򴹻ҷФƤޤǤϡľܤη̤Ȼפޤ
(򤬰Ĥʤʬϡڤʬ뤳ȤǤ)
ȾϡƱȤ⤷ޤ󤬡ľѤιͤȤäơ̿15η G H3H5 Ʊʤȡ
H3H5 Ϥ줾̿ 3̿ 5 ν C3C5 Ǥ뤳ȡC3C5 C15 ƱǤ뤳ȡ
ʤɤȤäƤ褦Ǥ
֤褦ǤפȤΤϼǡޤ褯ǤƤʤΤ (^^;

ʤϤϤ껻ȤǤ顤ʾεϡä᡼ĺйǤ
ͥνȡ 917ʷ 21:07:33 MAIL:uchi@sco.bekkoame.ne.jp 30739

uchinyan
Ǥ͡İ㤤Ǥ͡^^;
ͤͤƤ줿ΤǡäȤȤȤǤ
⤦­Ǥ^^
쥹꤬Ȥޤ
¾γ͡ޤ줹m(_)m
ļˡ 917ʷ 22:00:00 30740


⤢꤬Ȥޤ
̿15ȶŪȽƤΤǡʬȤ鷺˾ǤʤʡȴĥäƤߤޤΤȤŸʤǤ

918ʲС 7:38:40 30741
25no12
565ΰ̤nؤγĥnĤμεտ¤1̤ǺȤʤΤϡnĤο٥2, 3, 7, 43, 1809, ...ˤȤʤȤǤפǤɤƤ褦Ǥ

Google"Sylvester's sequence"ǸWikipediaʤɤҥåȤޤ
"The sum of the first k terms of the infinite series provides the closest possible underestimate of 1 by any k-term Egyptian fraction."
ʤǤ"the infinite seriese"٥εտʤ¡ˤؤƤޤ
ȤޤͤοؼԤƤ褦ǡReferencesĤƤޤ
http://arxiv.org/PS_cache/math/pdf/0502/0502247v1.pdf
̤MuirheadǤϤʤΤޤˤѤǤ
¾ˤʸϤޤǰʤɤޤǤ

Muirhead's theoremϸ߲桦Ǥ
918ʲС 19:20:19 30742
⡼ޥ
#30742
25 no 12ʺŤޤְ̾㤨ƤߤǤOrz ĤⵤդΤ٤^^; ˡ͡
ξäƤΤΤꤿǤ ^^
ʬжƲޤ Orz
ʸReferenceˤϡΥޥ̥ȯȸƤϡǥʥȥ륦åɤ̾ˤ̾ܤäƤޤ͢
918ʲС 22:14:02 30743

#30742
25 no 12
⤵äpdfեޤ
֤ɤߤޤ
ThanksǤ
ļˡ 919ʿ 4:19:32 30744

ɿ
ӣУäʡ̾˺ޤˤ򥤥󥹥ȡ뤷
ƥΰ٤#XXXXX򥯥åƤ⥨顼
ˤʤޤ
ɣŤΥץ򤤤ФΤʡ
ļˡ 919ʿ 4:21:55 30745

äɡäѤꥨ顼
#XXXXXåǥɥФɤʤ
¸ΤʤǤ
ļˡ 919ʿ 4:33:05 30746
25no12
#30742ɵǤ

ѤPDFϡnĤμѤkȤơk٥K꾮ȤϡnĤμεտs=m/k<(k-1)/k<(K-1)Ksϥ٥εտS=(K-1)/K꾮kK礭ȤMuirhead's theoremѤпѡꤤȻפޤˤȤs<=SȤʤΩnĤμ٥ȰפȤˤȤŪǼˡǸȤΤǤ

Muirhead's theorem (Muirhead's inequality)ϲ̤

Let s1 &#8805; s2 &#8805; ... &#8805; sn &#8805; 0, and
t1 &#8805; t2 &#8805; ... &#8805; tn &#8805; 0, and
si = ti (i=1n)
and for all k < n, si &#8805; ti (i=1k)

Then for all nonnegative numbers x1, x2, ..., xn,
x1^s(1) x2^s(2) ... xn^s(n) &#8805; x1^t(1) x2^t(2) ... xn^t(n)
where the sums run over all the permutations of {1, 2, 3, ..., n}
ʢ㤨Сn=3ʤ顢((1),(2),(3))=(1,2,3, (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)Ĥޤ¤ؤn!̤Τ٤ƤˤĤƤΦ

ʤߤˡsi=(1,0,...,0), ti=(1/n,1/n,...,1/n)Ȥȡʿ>=ʿѤȤʤꡢʿѤ˴ؤ͡ΰ̲פȲ⤵Ƥޤ

ϲȤˤޤ
http://mcraeclan.com/MathHelp/BasicNumberIneqMuirheadsInequality.htm
n=2ξϲýդʿѡʤΤʤäˤѤƾn3ʾΤȤϡsitiŪʿä(n-1)ӤǤǤ褦ˤƿŪǼˡǾȤΤΤ褦Ǥʤޤʤ¿ʬʬäǡäȸڤϤƤޤˡ

WikipediaˤʾϤʤˤϤΤǤst˴ؤθդˤʤäƤޤ

ؤʤؤζܰ衢ʤٶʤǤϦŦĤäˡ
ޤȾòǤƤʤǤٶˤʤޤ͡ݡ

⡼ޥ󤵤󡢡֥ޥ̥פäƲĴ٤ƤߤޤɤΡŷ͡׿ؼԤʤǤ͡
桢ˤͤΤǤ͡
919ʿ 14:05:42 30747
25no12
ߤޤʸΤǺޤ

#30742ɵǤ

ѤPDFϡnĤμѤkȤơk٥K꾮ȤϡnĤμεտs=m/k<(k-1)/k<(K-1)Ksϥ٥εտS=(K-1)/K꾮kK礭ȤMuirhead's theoremѤпѡꤤȻפޤˤȤs<=SȤʤΩnĤμ٥ȰפȤˤȤŪǼˡǸȤΤǤ

Muirhead's theorem (Muirhead's inequality)ϲ̤

Let s1 >= s2 >= ... >= sn >= 0, and
t1 >= t2 >= ... >= tn >= 0, and
si = ti (i=1n)
and for all k < n, si >= ti (i=1k)

Then for all nonnegative numbers x1, x2, ..., xn,
x1^s(1) x2^s(2) ... xn^s(n) >= x1^t(1) x2^t(2) ... xn^t(n)
where the sums run over all the permutations of {1, 2, 3, ..., n}
ʢ㤨Сn=3ʤ顢((1),(2),(3))=(1,2,3, (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)Ĥޤ¤ؤn!̤Τ٤ƤˤĤƤΦ

ʤߤˡsi=(1,0,...,0), ti=(1/n,1/n,...,1/n)Ȥȡʿ>=ʿѤȤʤꡢʿѤ˴ؤ͡ΰ̲פȲ⤵Ƥޤ

ϲȤˤޤ
http://mcraeclan.com/MathHelp/BasicNumberIneqMuirheadsInequality.htm
n=2ξϲýդʿѡʤ鸫ǤʬȤäŪñ˾ǤޤˤѤƾn3ʾΤȤϡsitiŪʿä(n-1)ӤǤǤ褦ˤƿŪǼˡǾȤΤΤ褦Ǥʤޤʤ¿ʬʬäǡäȸڤϤƤޤˡ

WikipediaˤʾϤʤˤϤΤǤst˴ؤθդˤʤäƤޤ

ؤʤؤζܰ衢ʤٶʤǤϦŦĤäˡ
ޤȾòǤƤʤǤٶˤʤޤ͡ݡ

⡼ޥ󤵤󡢡֥ޥ̥פäƲĴ٤ƤߤޤɤΡŷ͡׿ؼԤʤǤ͡
桢ˤͤΤǤ͡
919ʿ 14:07:34 30748
25no12
٤⤹ߤޤ
#30748ΡְѤPDFפιԤθȾ
s=m/k<(k-)/kʬ椬ȴƤޤs=m/k<=(k-1)/kǤ
餷ޤ
919ʿ 14:30:12 30749

äƤ⡢ڡǥ顼ȯޤ
ˤʤ롣äĴ٤ɡ夲(Χ`)
ԤΡޥ뤵ơ
ļˡ 919ʿ 15:45:29 30750
⡼ޥ
#30748
25 no 12 ء
󤢤꤬Ȥޤ Orz ^^

>nĤμѤkȤơk٥K꾮ȤϡnĤμεտs=m/k<=(k-1)/k<(K-1)Ksϥ٥εտS=(K-1)/K꾮kK礭ȤMuirhead's theoremѤпѡꤤȻפޤˤȤs<=SȤʤΩnĤμ٥ȰפȤˤȤŪǼˡǸȤΤǤ

k ٥礭Ȥ⡢­ο¿s礭ʤꤽ
k ٥꾮Сs S礭ʤꤽľŪˤϻפäƤޤɡǤ^^;
919ʿ 23:30:05 30751