Ѥ
ٻѷʬ䤵ƤΤǤ줾žޤ
Ҥäա 128ڡ 0:12:31 HomePage:BLOOOOOOOOG35680
ޥ
Ԥν­ˤ֤Τ԰¤ǤΤ褦ʻѷ£ä¸ߤ뤳ȤγǧȤľˤäΤǤ...
PowerBook 128ڡ 0:14:53 MAIL:masaru-y@sansu.org HomePage:Men @ Work35681
Ѥ
http://gyazo.com/a309fd4ec813fb1f4d50eaaa133991e2.png
ޤ˽񤯤ȤʴǤERHľѤǤ뤳ȤξʤɤϾά
Ҥäա 128ڡ 0:23:58 HomePage:BLOOOOOOOOG35682
IFoEtyprG
BCEPHQΤ줾θS,TABC˲­UȤ
ES=BU,HT=CU
ޤѷESB=ѷBUAѷHTC=ѷCUA
ͳѷEBCH=ESTHݻѷESBݻѷHTC
=ES+HTˡSB+BC+CTˡѷABC
=5*11/2-3*5/2
=20
ϾľդȲλ­
ȤǤޤ
128ڡ 0:37:16 35683
㡼ߡ
ޤǻäǰ񤷤ä⡣ޤ
Ȥ礦Ȥ䤯 128ڡ 0:57:11 MAIL:kakuromaster@star.cims.jp 35684
ͣ.ǥ
ľ£äȡľţСȣѤȤθ򡢤줾ӡ
ľƣǤȡľţСȣѤȤθ򡢤줾ա֡Ȥޤ
ŤȣȤ
ѡᢤУţȡţӣԣȡܢӣգ֣ԡݡʢУգơܢѣǣ֡
1/2)*8*8(1/2)*5*(3+5+3)5*(3+5+3)(1/2)*5*3107
ȵޤά
128ڡ 16:10:10 35685
⡼ޥ
ޤ...ؤǤ...^^;
ʿԻշ15
=5^2+a^2+b^2
λ=15/2
ʤФʤ=ab*sin(+90)=ab*cos

a^2+b^2-2ab*cos=5^2
a^2+b^2-2ab*cos(+90)=a^2+b^2+2ab*sin=8^2
ab*sin=15
a^2+b^2=64-2*15=34
34-25=2ab*cos
cos=9/2
ä礯...
3*15+5^2+34+15/2-9/2=45+25+34+3=107
Orz...
128ڡ 3:20:00 35686
uchinyan
Ϥˤϡơϡ
ؤǤϴñǤϾͤޤȻפޤ
ĹǤʴǡ

ǽˡD CI B Ӥޤ
ȡRD = IA = HCRD//IA//HC ꡤRDCH ʿԻշRI = DA = EBRA//DA//EB ꡤRIBE ʿԻշʤΤǡ
RE = IBRE//IBRH = DCRH//DC ˤʤޤ
ơAB = ADAI = ACBAI = BAC + CAI = BAC + 90 = BAC + DAB = DAC ꡤ
ABI ADC ǡDC = BI 90žƤΤǡDCBI Ǥ
ǡRH = DC = BI = RE = 8 cmERI = 90ˤʤޤ
ꡤE H ǡ
ѷREPFGQH = REH + EPFB + BFGC + CGQH + EBCH
ȹͤޤ
ޤREH ϡĴ٤Ȥ顤RH = RE = 8 cm ľջѷʤΤǡ
REH = 8 * 8 * 1/2 = 32 cm^2
Ǥ
ˡʿԻշǤ EPFB Ǥ
ABE = CBF = 90 EBF = 180 - ABC ʤΤǡBEP = BFP = ABC ǡޤBE = FP = ABEP = BF = BC Ǥ
ǡBEP PFB ABC ˤʤꡤ
EPFB = ABC * 2 = 5 * 3 * 1/2 * 2 = 15 cm^2
ǤƱȤ CGQH ˤ⤤ơ
CGQH = ABC * 2 = 5 * 3 * 1/2 * 2 = 15 cm^2
Ǥ
ޤ餫ˡ
BFGC = 5 * 5 = 25 cm^2
Ǥ
ǸˡEBCH ǤBC ξüĹ EPHQ Ȥθ򤽤줾 ST ȤޤESB = HTC = 90Ǥȡ
EBCH = ESTH - BES - CHT
ǡESTH Ǥ
ޤEPFB = ABC * 2 ꡤSBF = EBF = EPFB/2 = ABCBF = BC ʤΤǡ
A BC ˲­ U ȤȡSB = AU = 3 cm ˤʤޤޤƱͤˤơTC = 3 cm Ǥ
ˡBES = BEP = ABC = ABU ʤΤǡBES ABUES = BU ǤƱͤˤơHT = CU Ǥ
ǡES + HT = BU + CU = BC = 5 cm ˤʤꡤ
EBCH = ESTH - BES - CHT
= (ES + HT) * ST * 1/2 - ABC = BC * (SB + BC + TC) * 1/2 - ABC
= 5 * (3 + 5 + 3) * 1/2 - 15/2 = 55/2 - 15/2
= 20 cm^2
Ǥ
ʾꡤ
ѷREPFGQH = REI + EPFB + BFGC + CGQH + EBCH
= 32 + 15 + 25 + 15 + 20
= 107 cm^2
ˤʤޤ
ͥνȡ 128ڡ 12:32:59 MAIL:uchi@sco.bekkoame.ne.jp 35687
uchinyan
(ɲ)
ǼĤɤߤޤۤܳƱˡΤ褦Ǥ

#35680#35682
REH ľջѷˤʤ뤳ȡ
ʳѤܲ = 5 cm ǹ⤵ 5 cm ABC 5 ܡBFGC¤ʤ뤳ȡ
Ȥˡ

#35683#35687
#35680ʤɤȤۤȤƱǤ
REH ľջѷˤʤ뤳ȡ
ʳѤܲ = 5 cm ǹ⤵ 11 cm ABC 3 ܡBFGC¤ʤ뤳ȡ
Ȥˡ

#35685
#35680ʤɤȤۤȤƱǤ
REH ľջѷˤʤ뤳ȡ
ʳѤܲ = 5 cm ǹ⤵ 11 cm 5 * 11 Ť ABC Τʤ뤳ȡ
Ȥˡ
ɤʤ顤ST Ϲͤˡ
= REH + EUVH - ABC
= 8 * 8 * 1/2 + (5 + 5 + 5) * (3 + 5 + 3) * 1/2 - 5 * 3 * 1/2
= 107 cm^2
ʤ

#35686
ѴؿȤäزˡοزˡƱǤ
ǽ餳ǻǤǤʤФͤΤǤפĤžơ#35687ˤʤޤ

#35691
#35680ʤɤȻƤޤREH ˹Ʊ APQ ܤ
ѷREPFGQH = APQ + REPA + RHQA + PFGQ
ʬ䤹ˡ
βˡȤºݤ˾ܤ񤭽Фл褦ˤʤꤽʤΤǡɤϿޤʡΤϡ
#35687ǤȤ ST = 3 + 5 + 3 = 11 cm ʬ뤳Ȥȡ
APQ = 8 * 8 * 1/2 = 32 cm^2
REPA + RHQA = 5 * 11 = 55 cm^2
PFGQ (PBF + BFGC + QCG)/2 = (25 + 15)/2 = 20 cm^2
ȡޤ׻ñˤǤ뤳ȤȻפޤ
ɤʤ顤
ѷREPFGQH = REI + EPGH + PFGQ
ʤ

#35692
#35691οޤ򸫤ʤɤʬ䤹Ȼפޤ#35686οزˡ򻻿Ǽ¸βˡΤ褦Ǥ
ѷREPFGQH = RDAI + DEBA + ABC + ACHI + EPFB + BFGC + CGQH - RDE - RIH
RDAI + DEBA + ABC + ACHI = DBCI * 2 - ABC = BI * DC - ABC = 8 * 8 - 15/2 = 113/2
RDE + RIH = APB * 2 = (AP * AQ - BFGC - ABC * 4)/2 = (8 * 8 - 5 * 5 - 15/2 * 4)/2 = 9/2
ѷREPFGQH = 113/2 + 15 + 25 + 15 - 9/2 = 107 cm^2
Ǥ͡
¤ϡزˡ顤⡤RDE + RIH μˤϵդƤΤǤ
DBCI ܤ 2 ܤ륢ǥˤϵդǤλˡƨޤ
ǰ
ĿŪˤϡޤˡȻפޤ

ʤ轵Τ褦Ǥ#35665#35666#35674ʤɤΩιε̣ɤߤޤ
ͥνȡ 129ʶ 11:37:53 MAIL:uchi@sco.bekkoame.ne.jp 35688
ͣ.ǥ
#35688 > uchinyan
> = REH + EUVH - ABC
>
> ʤ
ʤۤɡǤ͡Ǽ

128ڡ 16:12:29 35689
ϥ饮㡼ƥ
Mathematicaˤ뻰ѴؿǤȤƤ׻Ǥʤ׻Ǥ
128ڡ 19:18:03 HomePage:湩ؤ˥35690
bmkage
http://www.dotup.org/uploda/www.dotup.org601333.png
ʴǡ
128ڡ 21:11:48 35691
ߡ
ƻ򤷤Τʤ

ģá£ɡ᣸ѡģäȣ£ɤľʤΤǡ
ߣࣲ32(2)Ģģ£ã
32ߣ7.5152515111.5(2)Ŀ޷
УӣѡᣱդѤȤʤӤȤꡤ
£âᢤУƣ¢ᢤӣǣƢᢤѣã
(ߣ7.5ߣ25)ࣴ2.25(2)ĢУ
111.52.25ߣ107(2)

ꥢ륿ǤϷӡż֤ǸɤäѤ餺ġ
128ڡ 21:35:01 35692
baka
㡼ߡ񤷤äȤ򤱤ƸɤǤ
ˡERդȤäƤä
ȤϢEDRȢRIH򤦤ޤФƤΤݥȤʤΤʤ
129ʶ 12:34:59 35694
ͣ.ǥ
̣򸫤Ĥޤ
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1135966531
ʤηϽФƤޤϤɤȽǤǤ礦

[ɵ] ηϴְ㤨ƤΤǡͤľǤ

130ڡ 15:07:27 35695
doba
#35695 ͣ.ǥ
˶̣ǤޡȤ˲򤱤ǤϤʤǤ͡
ץǸڤȤηޤcicadi_sapiensη̤
˰פޤ
ʤcicadi_sapiensβˤϡս⤢褦Ǥ

㤤Ƥδְ㤤θϡ֥롼åȡΨפȤ
ѰդʡʺΤʤ˻פߤˤ褦Ǥ
롼åȤǻ˴ΨΨȤʤΤϡ
ˤޤ᤿ƴݤοȿͿפƤ礫
ˤޤ᤿ƴݤοͿܿǡʤĤΤƤȯξ
Ȼפޤ

ʤΤǡǤϡȤ֥󥿥Τɤ餫ȤȤʤä
¨λפȤ롼뤬ʤäȤƤ⡢ͤξʿǤϤޤ

Υ롼ǥ󥿥ʳΣͤΨȤʤäΤϡ
̥롼Τˡ󥿥ΣͰʳǽλ礬ӽ줿
ƽܤˤƤΣͤ˶ޤ줿ͤο٤ؤƤ
Ψ˱ƶʤǤ

ȤǤ¾ξ⤢ꡢ¿ΤǡͤޤǾñ
ФƤߤޤ

֣ĤμʤꡢΤĤˤϥ掠ӤäƤޤ
ܤˤϤɤ줬掠Ӽʤ狼ޤ
£äΣͤνˣĤĿ٤Ƥ
掠Ӽʤ򿩤٤餽λǥȤȤʤä
ʹߤϤοͤФƿ³ΤȤȤ
ͤ줾ΥȤȤʤΨƲ

Υ롼åȤǤʪʤΤǡäѤʤˤޤ(^^;
130ڡ 12:36:42 35696
ͣ.ǥ
> doba ͭ񤦤ޤ
doba#35695ɤǤ뤦ˡͤ㤤򤷤ƤʬΤ˵
Ĥޤʹͤľޤ
dobaϡ蘆ꤷĤäƤʤȤꤷǤ
٤ΤȤȡ,,äΤ蘆򿩤٤Ψϡ줾
7/15 ,3/5 ,2/3 Ǥ礦
130ڡ 19:52:30 35697
doba
#35697 ͣ.ǥ
蘆ϣĤꡢͤǣĤϿ٤ʤΤǡ
ͤγΨ­ȣˤʤȻפޤ

ͤȤƤϡͥȤˤʤäǾѤ
ʻĤäʤ򣲿ͤǸߤ˿٤褦ˤʤˤᡢ
ɤΥߥ󥰤ǺǽΣͤȤˤʤ뤫Ǿʬޤ

ǽ˥ȤˤʤΤξﲼǣܤ˥ȤˤʤΨ
ΣܤǤΨ5/15 ¡3/5á2/5
¤ΣܤǤΨ4/15 á2/42/4
äΣܤǤΨ3/15 2/3¡1/3
ΣܤǤΨ2/15 ¡1/2á1/2
¤ΣܤǤΨ1/15 á1/1

ȤˤʤΨ(5+2+2+2)/15 = 11/15
¤ȤˤʤΨ(3+4+1+1+1)/15 = 2/3
äȤˤʤΨ(2+2+3+1+1)/15 = 3/5

Ȥʤޤľ̤ꡢ˿٤㴳Ǥ褦Ǥ͡
131 1:56:24 35698
ͣ.ǥ
#35698 doba
١ͭ񤦤ޤ
׻ѻľƤߤޤޤơ׻ƤΤǤ
ˤĤƤϡ(1/3)+(2/15)+(2/15)+(2/15) 7/15ȤƤޤա
,äˤĤƤϡ𻨤˽񤤤ƤΤǡְ㤨Ƶդ񤤤ƤޤäƤޤ
ƻǤ͡
ʤ褦ǤϡȤƤʤɲ򤱤ǤϤʤǤ͡ʾС

131 11:25:25 35699
uchinyan
#35696doba
ǧͤơ¿ʬͣ.ǥƱƻˡǷ׻顤Τˡ
A = 11/15, B = 2/3, C = 3/5
ˤʤޤ
ϡϤ뤫ˤ䤳ʤΤǡ괺doba򿮤뤳Ȥˤޤ (^^;
ͥνȡ 131 13:53:22 MAIL:uchi@sco.bekkoame.ne.jp 35701
???
Option Explicit
Sub Macro1()
Sheets("Sheet1").Select
Cells(1, 1).Value = 0
Cells(2, 1).Value = 10000
Range("A1").Select
Dim Ax As Double
Dim Ay As Double
Dim Bx As Double
Dim By As Double
Dim Cx As Double
Dim Cy As Double
Dim Dx As Double
Dim Dy As Double
Dim Ex As Double
Dim Ey As Double
Dim Hx As Double
Dim Hy As Double
Dim Ix As Double
Dim Iy As Double
Dim Rx As Double
Dim Ry As Double
Dim Ax_min As Double
Dim Ax_max As Double
Dim Ax_min0 As Double
Dim Ax_max0 As Double
Dim Axx As Double
Dim RE As Double
Dim kizami As Double
Dim sa As Double
Dim menseki As Double
Dim dankai As Integer
kizami = 0.01
Ay = 3
Bx = 0
By = 0
Cx = 5
Cy = 0
Ax_min0 = 0
Ax_max0 = 5
For dankai = 1 To 12
If dankai = 1 Then
Ax_min = Ax_min0
Ax_max = Ax_max0
Else
Ax_min = Application.Max(Axx - kizami, Ax_min0)
Ax_max = Application.min(Axx + kizami, Ax_max0)
kizami = kizami * 0.1
End If
For Ax = Ax_min To Ax_max Step kizami
'(Dx-Ax)=(cos(-90) -sin(-90))(Bx-Ax)
' Dy-Ay sin(-90) cos(-90) By-Ay
'(Dx)=( 0 1)(Bx-Ax)+(Ax)
' Dy = -1 0 By-Ay Ay
Dx = (By - Ay) + Ax
Dy = -(Bx - Ax) + Ay
'(Ex-Bx)=(cos90 -sin90)(Ax-Bx)
' Ey-By sin90 cos90 Ay-By
'(Ex)=(0 -1)(Ax-Bx)+(Bx)
' Ey = 1 0 Ay-By By
Ex = -(Ay - By) + Bx
Ey = (Ax - Bx) + By
'(Hx-Cx)=(cos(-90) -sin(-90))(Ax-Cx)
' Hy-Cy sin(-90) cos(-90) Ay-Cy
'(Hx)=( 0 1)(Ax-Cx)+(Cx)
' Hy = -1 0 Ay-Cy Cy
Hx = (Ay - Cy) + Cx
Hy = -(Ax - Cx) + Cy
'(Ix-Ax)=(cos90 -sin90)(Cx-Ax)
' Iy-Ay sin90 cos90 Cy-Ay
'(Ix)=(0 -1)(Cx-Ax)+(Ax)
' Iy = 1 0 Cy-Ay Ay
Ix = -(Cy - Ay) + Ax
Iy = (Cx - Ax) + Ay
'AR=AD+AI (Rx-Ax,Ry-Ay)=(Dx-Ax,Dy-Ay)+(Ix-Ax,Iy-Ay)
Rx = (Dx - Ax) + (Ix - Ax) + Ax
Ry = (Dy - Ay) + (Iy - Ay) + Ay
RE = Sqr((Ex - Rx) * (Ex - Rx) + (Ey - Ry) * (Ey - Ry))
sa = Abs(RE - 8)
If Cells(2, 1).Value > sa Then
Cells(2, 1).Value = sa
Axx = Ax
menseki = 5 * 5
menseki = menseki + 5 * (Bx - Ex)
menseki = menseki + 5 * (Hx - Cx)
menseki = menseki + 5 * (Ry - By) * 0.5
menseki = menseki + Abs(Ex * Ry - Rx * Ey) * 0.5
menseki = menseki + Abs((Hx - Cx) * (Ry - Cy) - (Rx - Cx) * (Hy - Cy)) * 0.5
Cells(1, 1).Value = menseki
End If
Next Ax
Next dankai
End Sub
21ʷ 11:06:57 35702
ѥ&10ﶥ
#35695,35696
٤Фʤ顢,dabaȤեdobaΥ̤Ǥ뤳ȳǧƤޤäȤ⡢ϤϤץȤΤǤdobaη̵̤ФƤǽ⤤ǤƱ̤ޤǤ˥ץ٤ޤ
21ʷ 18:57:30 HomePage:ѥ&10ﶥ35703
apato
ޥ뤵
#35669.#35670.#35671ˤʤäƤС
ֲˤʤäƤΤǻʤǤ
εĮ 23ʿ 0:51:40 35704