٥륯åĥ
Ѥμ012١ˡ2гѡˡ34ʬ롣
04ΤȤդμ1+1+2+1+16
12١ˡ3ΤȤդμ1+4+6+4+116
2гѡˤΤȤ1+2+4+2+110
62+163+1070
Ǹ˿椬Τ702140
140̤ˤʤޤ

֤ĤɤäơפʤΤǡɤäƤʤ139̤꤬Ȼפޤ
53ڡ 0:14:56 47217
(Keigei)
֤ĤɤäơפȤΤϡĤɤޤУ̤Ǥ
̤ϣİʾȹͤƣ̤Ȼפޤ
53ڡ 0:24:58 47218
!!!
2^3+(2^5-2^3)/2+(2^9-2^5)/4=140
ɤΤȤФ
͡ 53ڡ 0:51:46 47219
ޥ
ߤޤ󡢤Ŧ̤ꡢ139̤ΤۤȻפޤʵŤƤޤǤ˺ϡ139̤ꡢ140̤ꡢɤȰȤˤޤm(_ _)m
iMac 53ڡ 0:56:06 HomePage:47220
ǯ
ĤɤΤȤФͤƤޤϡɤʬͤơĤȣĤϹͤʤä
ɤޥθĿǾʬ
ʲžоΤΤΤ:(9Cn-оΤ֤Ŀ)/4оΤʥѥο
09ġơ1
18ġơ(9C1-1)/4+1=3
27ġơ(9C2-4)/4+2=10
36ġơ(9C3-4)/4+2=22
45ġơ(9C4-6)/4+4=34
ǡ(1+3+10+22+34)*2=140
n=1ʥѥ1֤Ŀ1
ߡߡ
ߡ
ߡߡ
n=2ʥѥ2֤Ŀ4
ߡߡߡߡߡߡߡߡ
ߡߡߡߡߡߡߡߡߡ
ߡߡߡߡߡߡߡߡ
n=3ʥѥ2֤Ŀ4
ߡߡߡߡߡߡߡߡ
ߡߡߡߡߡ
ߡߡߡߡߡߡߡߡ
n=4ʥѥ4֤Ŀ6
ߡߡߡߡߡߡߡߡ
ߡߡߡߡߡߡߡߡߡߡߡߡ
ߡߡߡߡߡߡߡߡߡ

53ڡ 9:41:42 47221


Ф
https://i.imgur.com/28MyExk.jpg
ĤΥޥޤΤ褦ʬ줾
ײADΥѥˤʤޤ
(4ѥ)⥤⥦⥨⥢ (4-1)=6
(3ѥ)=⥦⥨⥢ 432=24
=⥤⥨⥢ 43=12
(2ѥ)==⥨ 43=12
=⥦= 432=6
=⥤= 432=6
(1ѥ)=== 4̤
ʾƤξˤĤơ2̤ꤢΤ
(6+24+12+12+6+6+4)2=140
Τˤ140-1=139̤Ǥ礦

ޥۤεѤƤ񤭹ߤ񤷤ʤޤ
(Τ񤭹ߥܥ󤬾äƤޤ)
53ڡ 2:01:15 47222
鯤ο
濴ޥnɤ֤A(n)̤ꤢȤ롣0n8
ɤ/ɤʤž뤳ȤͤȡA(8-n)A(n)
顢ܼŪˤϡA(0)A(4)Ф褤
A(0)1
A(1)2
ľˤ狼롣

A(2)ˤĤ
ޥΤɤ룲ޥ8C228̤ꡣ
Τ90뤺IJžȤ
180žǽơȤƱ֤ȤʤΤ4̤ꡣ
¾ϡ360žǽƼȤȤƱ֤Ȥʤ롣
äơA(2)4/2+(28-4)/48

A(3)ˤĤ
ޥΤɤ3ޥ8C356̤ꡣ
Τ90뤺IJžȤ360žǽƼȤȤƱ֤Ȥʤ롣
äơA(3)56/414

A(4)ˤĤ
ޥΤɤ4ޥ8C470̤ꡣ
Τ90뤺IJžȤ
90žǼȤȤƱ֤ȤʤΤ2̤ꡣ
180žǼȤȤƱ֤ȤʤΤ4̤ꡣ
¾ϡ360žǽƼȤȤƱ֤Ȥʤ롣
äơA(4)2+4/2+(70-2-4)/420

äơA(0)+A(1)++A(8)1+2+8+14+20+14+8+2+170

ξοϡ濴ɤ/ɤʤ70*2140̤ꡣ

ŪˤϡɤʤޤΤʤΤǡ
ʸˡ֤ɤʤ֤ޤפս񤭤Τ٥ȤȻפޤ
53ڡ 2:02:30 47223
ˤ
žѤʤΤġٲžƱˤʤΤġ
2^9
ä(2^9-8-10*2)4+8+10=139
Ǥ
Ķļˡ 53ڡ 4:16:33 47224
ֿء׾ι
桢Ѥοʬƽ񤭽Фޤ
줬¿ȯޤϤʤΤ
53ڡ 7:21:19 47225
̴
#47217 ٥륯åĥ

ͤ˥쥬ȤʲˡפޤѤοʬࡢ
ͤȯۤޤؤΥ󥹤ΰ㤤æ˹Ǥ⡢
򳰤ƤơǸˣܤȤϡ󡼡
ߤ˾ϾʬǤäȤ
ٻΤ桡 53ڡ 9:26:20 47226
baLLjugglermoka
GWٲˤȾ˲ᤷƤ鹹Ƥ˺դޤ׻ߥ餫2٤3ܤľ
53ڡ 19:16:54 47227
ǯ
!!!͡#47219 2^3 2^5 ϤɤΤ褦ʹͤ줿ΤƤʤǤ礦
2^3¾ƱΤʤ֡2^5ϲžƱΤ2Ĥ֡¾ƱΤʤ֡ȤȤͽۤǤΤǤ

53ڡ 23:33:06 47228
CRYING DOLPHIN
ιΤ⡼ɤǤƬǥꥢ륿Ǥ̵Ǥ
ι鵢ԤƤäȼδξǹͤޤ

#47228
#47219βο¬Ǥβ򥢥󥸤ɽޤ

9սΥޥܤŬɤˡ2^9512̤
X90180270ٲžȤפɤ
Y180ٲžȤΤ߰פɤ
ZĤɤžƤפʤɤ

žƽŤʤΤۤʤˡXYZ2^9̤ꡣ()
žƽŤʤΤƱˡȤȤΤXY2Z4()

()Xɤ
90180270ٲžȤפɤפΥ᡼ϰʲ̤ꡣ



ƱʤƱˤʤȤʤΤ2^3̤ꡣ()

()Yɤ
180ٲžȤΤ߰פɤפΥ᡼ϰʲ̤ꡣ



ƱʤƱˤʤ2^5̤Τ()2^3ϼɬפΤǡ2^52^3̤ꡣ()

ʺ)Zɤ
()()()ꡢ2^92^3(2^52^3)2^92^5̤ꡣ

ʾ()ꡢ2^3(2^52^3)2(2^92^5)4140̤ꡣ

()ʬϡ伫ȤβȤƤƻ˿夲ޤ
ï⤤ʤԳϡ 54ʶ 0:12:06 HomePage:֥⤢롣47229
!!!
#47228
CRYING DOLPHIN#47229Τޤ޻μΰ̣Ǥ
μȳŪʲDz465995Ʊ褦ˤDz򤱤ޤ
͡ 54ʶ 6:22:21 47230
ǯ
#47229, #47230
꤬Ȥޤ褯ޤˤޤˡǤ͡
54ʶ 19:26:11 47231
kyorofumi
Burnside theorem
(2^9+2^3+2^5+2^3)/4 = 140
54ʶ 20:36:09 47232
ˤ⡼
ɤĤ֤ο򣰿飴ޤǤΥѥܤޤ
οɤ뤫ɤʤǾʬˣѤΤɤ줿Ѥο
٤ʬޤäɥ
󤬤񤷤Ǥʣ٤ιͤѤޤ¿ʲǡ֤ޥʡפȻפޤ
54ʶ 20:41:08 47233
!!!
С󥵥ɤоηɤ褦ʵäȤ
͡ 54ʶ 22:06:41 47234
TT
ŻǤޤ
55ڡ 7:05:30 47235
TT
ϥ٥륯åĥƱǤ
55ڡ 7:07:44 47236

ץǤ
ͤAѴͤ90١180١270ٲžƤǤB,C,DȤ1ޤ

OPTION BASE 0
DIM P(511)

FOR i=0 TO 511
LET P(i)=1
NEXT I

LET n=0

FOR a1=0 TO 1
FOR a2=0 TO 1
FOR a3=0 TO 1
FOR a4=0 TO 1
FOR a5=0 TO 1
FOR a6=0 TO 1
FOR a7=0 TO 1
FOR a8=0 TO 1
FOR a9=0 TO 1
LET A=2^8*a1+2^7*a2+2^6*a3+2^5*a4+2^4*a5+2^3*a6+2^2*a7+2*a8+a9

IF P(A)=0 THEN GOTO 100
LET B=2^8*a7+2^7*a4+2^6*a1+2^5*a8+2^4*a5+2^3*a2+2^2*a9+2*a6+a3
LET C=2^8*a9+2^7*a8+2^6*a7+2^5*a6+2^4*a5+2^3*a4+2^2*a3+2*a2+a1
LET D=2^8*a3+2^7*a6+2^6*a9+2^5*a2+2^4*a5+2^3*a8+2^2*a1+2*a4+a7

LET n=N+1

IF P(B)>0 THEN LET P(B)=P(B)-1
IF P(C)>0 THEN LET P(C)=P(C)-1
IF P(D)>0 THEN LET P(D)=P(D)-1

100 !'
NEXT A9
NEXT A8
NEXT A7
NEXT A6
NEXT A5
NEXT A4
NEXT A3
NEXT A2
NEXT A1

PRINT n

END
Ĺꡡ 55ڡ 9:34:43 47237
å
ɤǸ䤤ʤȻפä顢4λȥƱ꤬ޤ
55ڡ 10:55:08 47238